Autonomous spacecraft rendezvous and docking on safe trajectories

Download
2018
Büyükkoçak, Ali Tevfik
In this thesis, rendezvous and docking operation of a pair of low earth orbit spacecraft is addressed. Two different sets of equations for the nonlinear orbital relative motion of spacecraft are derived and simulation codes for this motion are developed. First, Hill-Clohessy-Wiltshire (HCW) equations are used in chaser-target spacecraft configuration with Model Predictive Control (MPC) algorithm including some safety considerations such as debris avoidance, direction of approach constraint and slow impact requirement. The HCW equations are linearized assuming a circular orbit, and used in MPC algorithm. All authority is given to the chaser spacecraft, and the target is kept passive. Parametric studies are implemented for different cases with several constraint combinations. According to these studies, best planning horizon length and optimal weighting parameter are selected for each case. The safe trajectory generated by MPC approach, which avoids a relatively moving debris represented as an obstacle, is tracked by a novel Lyapunov based control algorithm as well. The algorithm is based on dual quaternions for the motion parametrization and provides a combined control of both translational and rotational motion. Another set of relative motion dynamics including combined attitude and position is derived. An error dual quaternion and its derivative are generated from desired attitude and position information. While desired attitude trajectory is a time-dependent polynomial function, the reference position trajectory is retrieved from MPC plan. Two control approaches are compared, and effectiveness of dual quaternion based control approach is demonstrated.

Suggestions

Orbit transfer optimization of a spacecraft with impulsive thrusts using genetic algorithm
Yılmaz, Ahmet; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2012)
This thesis addresses the orbit transfer optimization problem of a spacecraft. The optimal orbit transfer is the process of altering the orbit of a spacecraft with minimum propellant consumption. The spacecrafts are needed to realize orbit transfer to reach, change or keep its orbit. The spacecraft may be a satellite or the last stage of a launch vehicle that is operated at the exo-atmospheric region. In this study, a genetic algorithm based orbit transfer method has been developed. The applicability of gen...
SAFE SPACECRAFT RENDEZVOUS WITH CONSTRAINED MODEL PREDICTIVE CONTROL
BÜYÜKKOÇAK, ALİ TEVFİK; Tekinalp, Ozan (2019-01-01)
Rendezvous and docking problem of a pair of low Earth orbit spacecraft is addressed. Equations for the nonlinear orbital relative motion of spacecraft are derived and a simulation code for this motion is developed. For the control algorithm, linearized Hill-Clohessy-Wiltshire (HCW) equations are used in chaser target spacecraft configuration. All authority is given to the chaser spacecraft, and the target is kept passive. The HCW equations are linearized assuming a circular orbit. Model Predictive Control (...
Safe Spacecraft Rendezvous with Constraint Model Predictive Control
Tekinalp, Ozan (2018-08-23)
Rendezvous and docking problem of a pair of low Earth orbit spacecraft is addressed. Equations for the nonlinear orbital relative motion of spacecraft are derived and a simulation code for this motion is developed. For the control algorithm, linearized Hill-Clohessy-Wiltshire (HCW) equations are used in chasertarget spacecraft configuration. All authority is given to the chaser spacecraft, and the target is kept passive. The HCW equations are linearized assuming a circular orbit. Model Predictive Control (M...
Numerical analysis of the effects of atmospheric parameters on space launch center safety
Yaman, İbrahim; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2016)
This thesis study aims at the problem of space launch center safety which is dependent on launch vehicle conceptual design and atmospheric parameters. Selection of the concept at the initial step of the satellite launch vehicle affects the project cost and space launch center safety directly. It is also important to model properties of atmospheric conditions and conduct safety analysis. Successful mission for a launch vehicle depends on providing the total velocity requirement. In this study, launch vehicle...
Experimental and computational evaluation of transient behavior of a typical satellite monopropellant propulsion system
Çilli Tarçın, Ayşegül; Aksel, Mehmet Haluk; Ak, Mehmet Ali; Department of Mechanical Engineering (2014)
In this study, a typical satellite monopropellant propulsion system is numerically modeled by using a commercial software and analyses are conducted regarding the priming operation of satellite propulsion system. Analyses are performed for different tank pressures, downstream line pressures, distance between the tank and orifice, distance between the orifice and latch valve, distance between the latch valve and exit valve, orifice diameter and pipe diameters. Moreover, a test setup is constructed and tests ...
Citation Formats
A. T. Büyükkoçak, “Autonomous spacecraft rendezvous and docking on safe trajectories,” M.S. - Master of Science, Middle East Technical University, 2018.