Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Correlation-based variational change detection
Download
index.pdf
Date
2018
Author
Aktaş, Gizem
Metadata
Show full item record
Item Usage Stats
172
views
199
downloads
Cite This
Change detection is an important research topic for observing the earth but there are various challenges to obtain an accurate change map such as image noise, subtle differences and image acquisition alteration. Various studies handled these problems as separate steps. In the first step, images are registered, then the image noise are eliminated. After images are normalized to eliminate image acquisition differences, actual change detection routine can be applied as a final step. However, this step-by-step approach leads to accumulation of errors in each step which leads to decrease in accuracy of final change detection map. Step-by-step approach is widely used because these problems are interpenetrated to each other and researchers use this to divide problem into sub-problems. In this study, a correlation based variational change detection (CVCD) method for elevation models is proposed. In essence, CVCD aims to produce smooth change maps while preserving the details of the terrain by minimizing a variational cost function. In this variational cost function a novel correlationbased data fidelity term is used with an L1-norm regularization term which imposes smoothness on obtained change map. In addition, L1-norm TV regularization term is preferred because it can preserve details such as point-changes, edges and corners of changes. In order to minimize the proposed cost function using simple approximations in an iterative manner, a simple and efficient algorithm is suggested. Quantitative experiments on synthetic noisy data show that CVCD can provide a detection rate of 95% while staying in the low false alarm regime, i.e. less than 10^-2. Also, qualitative experiments on real-world data show the success of the CVCD for the changes with different characteristics.
Subject Keywords
Remote sensing.
,
Imaging systems.
,
Image processing.
URI
http://etd.lib.metu.edu.tr/upload/12622241/index.pdf
https://hdl.handle.net/11511/27571
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Automated building detection from satellite images by using shadow information as an object invariant
Yüksel, Barış; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2012)
Apart from classical pattern recognition techniques applied for automated building detection in satellite images, a robust building detection methodology is proposed, where self-supervision data can be automatically extracted from the image by using shadow and its direction as an invariant for building object. In this methodology; first the vegetation, water and shadow regions are detected from a given satellite image and local directional fuzzy landscapes representing the existence of building are generate...
Shadow detection on multispectral images
Dağlayan Sevim, Hazan; Çetin, Yasemin; Department of Information Systems (2015)
Shadows caused by clouds, mountains or high human-made structures pose challenges for identification of objects from satellite or aerial images since they deteriorate and mask true spectral properties of the objects. Therefore, they should be detected to accurately classify objects. Moreover, in change detection problems, shadows deteriorate performance because mere spectral changes act as actual object changes. Shadows are also useful as cues for estimating the height of an object or determining the time of...
A Fast shape detection approach by directional integrations
Okman, Osman Erman; Akar, Gözde; Department of Electrical and Electronics Engineering (2013)
Detection and identification of objects from aerial images are important problems for various types of application areas. For many of the man-made structures shape is a fundamental feature by which these objects are separated from the background and other structures. In this thesis, a novel geometric shape detection algorithm based on the spatial properties of structures is proposed. Since the objects are transformed into 1-D vectors by evaluating directional integrals and detections occur by the analysis o...
Image fusion for improving spatial resolution of multispectral satellite images
Ünlüsoy, Deniz; Süzen, Mehmet Lütfi; Department of Geological Engineering (2013)
In this study, four different image fusion techniques have been applied to high spectral and low spatial resolution satellite images with high spatial and low spectral resolution images to obtain fused images with increased spatial resolution, while preserving spectral information as much as possible. These techniques are intensity-hue-saturation (IHS) transform, principle component analysis (PCA), Brovey transform (BT), and Wavelet transform (WT) image fusion. Images used in the study belong to Çankırı reg...
Multi-modal stereo-vision using infrared / visible camera pairs
Yaman, Mustafa; Kalkan, Sinan; Department of Computer Engineering (2014)
In this thesis, a novel method for computing disparity maps from a multi-modal stereo-vision system composed of an infrared-visible camera pair is introduced. The method uses mutual information as the basic similarity measure where a segmentation based adaptive windowing mechanism is proposed along with a novel mutual information computation surface for greatly enhancing the results. Besides, the method incorporates joint prior probabilities when computing the cost matrix in addition to negative mutual info...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Aktaş, “Correlation-based variational change detection,” M.S. - Master of Science, Middle East Technical University, 2018.