Aerothermodynamics of turbine blade trailing edge cooling

Tunçel, Tuğba
It is known that the thermal efficiency of gas turbines strongly depends on the turbine entry temperature of the working fluid. This has resulted in increased turbine working temperatures, and peak temperatures in advanced gas turbines have been well above maximum allowable metal temperatures for quite some time. For turbine blades to survive while operating beyond these material temperature limits, internal and external cooling techniques have been developed. Due to structural and aerodynamic restrictions, improving trailing-edge cooling methods creates a challenge for the designers. In modern turbine blades, pressure side cutbacks with film cooling slots stiffened with lands and pin fins embedded in passages are used to cool trailing edges. In literature, thermal improvements obtained by slots, lands and similar internal structures have been investigated in detail since the main purpose has been to promote cooling. But, when the performance of a gas turbine is considered, aerodynamic enhancements are as important as thermal performance. Regarding that, this thesis focuses on both aerodynamic and thermal aspects of a turbine blade trailingedge section cooling. The internal structure studied consists of staggered arrays of pins, and lands and airfoil-shaped blockages in front of the trailing edge slots right at the exit. The pins used are of cylindrical, elliptical, and airfoil shape, and have different sizes. A study using Computational Fluid Dynamics (CFD) was performed to investigate the flow structure and heat transfer both inside the passage and outside in the vicinity of trailing-edge slots. With the goal of choosing an optimal pin fin configuration that is aerothermodynamically more advantageous for slot film cooling, this thesis provides a thorough investigation that would be of interest to the turbine designers.


The Influence of cooling configuration and tip geometry on gas turbine blade tip leakage flow and heat transfer
Sakaoğlu, Sergen; Kahveci, Harika Senem; Department of Aerospace Engineering (2019)
In gas turbine engines, an increase in the thermal efficiency and power output can be ensured by increasing the turbine inlet temperature. This causes the high-pressure turbine (HPT) blades to be exposed to extremely high temperatures that requires the introduction of cooling flow in order to keep the temperatures within the allowable material limits and to reduce the high thermal loads on the blade. However, cooling flow introduced around the blade tip region affects the blade tip leakage flow and blade tip he...
Cooling performance investigation of a two-pass rib-roughened channel
Kavas, İsa; Kurtuluş, Dilek Funda; Yasa, Tolga; Department of Aerospace Engineering (2015)
The performance of the modern aero-engines is highly dependent on the turbine inlet gas temperature. The higher temperature leads to more compact and efficient machines. Additionally, specific fuel consumption of the engine is decreased for the same thrust rating. However, the turbine inlet temperatures of the today’s engines are already beyond the material structural limits. Hence, the turbine section must be cooled down to acceptable levels. Various types of cooling methods are typically applied to the ga...
Simulation of a non-premixed swirl burner
Solmaz, Mehmet Burak; Uzol, Oğuz; Uslu, Sıtkı; Department of Aerospace Engineering (2014)
Flame stabilizing in a gas turbine combustion chamber is one of the designing issues. Non-premixed swirling flames are commonly applied to aerial vehicles’ combustors due to their advantages in flame stabilizing and flame length shortening. However, swirling flows are very complex and hard to simulate even without reaction. Previous studies have showed that Large Eddy Simulation (LES) is able to predict swirling flow with a good degree of accuracy. On the other, it is quite expensive and is still far away f...
Numerical simulation of turbine internal cooling and conjugate heat transfer problems with Ra-based turbulance models
Görgülü, İlhan; Akmandor, İbrahim Sinan; Department of Aerospace Engineering (2012)
The present study considers the numerical simulation of the different flow characteristics involved in the conjugate heat transfer analysis of an internally cooled gas turbine blade. Conjugate simulations require full coupling of convective heat transfer in fluid regions to the heat diffusion in solid regions. Therefore, accurate prediction of heat transfer quantities on both external and internal surfaces has the uppermost importance and highly connected with the performance of the employed turbulence mode...
Thermal management of solid oxide fuel cells by flow arrangement
Şen, Fırat; Tarı, İlker; Department of Mechanical Engineering (2012)
Solid oxide fuel cell (SOFC) is a device that converts the chemical energy of the fuel into the electricity by the chemical reactions at high temperatures (600-1000oC). Heat is also produced besides the electricity as a result of the electrochemical reactions. Heat produced in the electrochemical reactions causes the thermal stresses, which is one of the most important problems of the SOFC systems. Another important problem of SOFCs is the low fuel utilization ratio. In this study, the effect of the flow ar...
Citation Formats
T. Tunçel, “Aerothermodynamics of turbine blade trailing edge cooling,” M.S. - Master of Science, Middle East Technical University, 2018.