Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Experimental investigation of the turbulent near wake flow field of multiscale/fractal grids
Download
index.pdf
Date
2018
Author
Amiri Hazaveh, Hooman
Metadata
Show full item record
Item Usage Stats
239
views
378
downloads
Cite This
Turbulent near-field flow of three different fractal grids, as well as conventional square grid, is investigated using two-dimensional particle image velocimetry. All grids are designed to maintain similar solidity, effective mesh size, and the smallest thickness for comparison. Experiments are conducted at a Reynolds number of 12000 based on effective mesh size. The instantaneous velocity field is realized on four sets of 35 equally spaced horizontal planes downstream of turbulence-generating-grids. Threedimensional mean flow is reconstructed by stitching aforementioned horizontal planes, extending to 22 effective mesh size downstream of each grid. Additional mean flow variables are then obtained by rotating horizontal planes to the corresponding vertical ones in grids comprising geometrical symmetry. Turbulent mixing characteristics in the near-wake region are assessed and turbulent kinetic energy production, decay, and dissipation rate as well as estimation of length scales downstream of turbulence-generating-grids are carried out. It has been shown that grids with different fractal patterns can be used as a passive devices to custom tailor turbulence even in the non-homogeneous anisotropic near grid region. Dissipation rate coefficient is also shown to be not constant in the near-wake region.
Subject Keywords
Turbulence.
,
Fractal grids.
,
Fluid dynamics.
,
Particle image velocimetry.
URI
http://etd.lib.metu.edu.tr/upload/12622617/index.pdf
https://hdl.handle.net/11511/27756
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Dielectric and Thermal Effects on the Optical Properties of Natural Dyes: A Case Study on Solvated Cyanin
Malcıoğlu, Osman Barış; Gebauer, Ralph; Varsano, Daniele; Baroni, Stefano (2011-10-05)
The optical properties of the flavylium state of the cyanin dye are simulated numerically by combining Car-Parrinello molecular dynamics and linear-response time-dependent density functional theory calculations. The spectrum of the dye calculated in the gas phase is characterized by two peaks in the yellow and in the blue (green and violet), using a GGA-PBE (hybrid-B3LYP) DFT functional, which would bring about a greenish (bright orange) color incompatible with the dark purple hue observed in nature. Descri...
Elliptical Pin Fins as an Alternative to Circular Pin Fins for Gas Turbine Blade Cooling Applications Part 2 Wake Flow Field Measurements and Visualization Using Particle Image Velocimetry
Uzol, Oğuz (null; 2001-06-07)
Extensive wake flow field measurements and visualizations are conducted using particle image velocimetry (PIV) inside the wakes of the elliptical and circular pin fin arrays in order to better understand the flow physics and the loss mechanisms of these devices. The true-mean velocity field inside the wake two diameters downstream of the pin fin arrays is obtained by collecting and ensemble averaging a large number of PIV samples in the midplane of the test section. Additional experiments are also conducted...
Thermal Sensitivity of the Fundamental Natural Frequency of a Resonant MEMS IR Detector Pixel
Pala, Sedat; Azgın, Kıvanç (2017-08-10)
This paper presents the effect of temperature on the natural frequency of (1,1) mode shape of a Resonant MEMS IR bolometer pixel in the range of 295-340 K. The detector pixel has a square plate geometry having side length of 1400 mu m and thickness of 35 mu m. The resonating plate is supported at its geometric center, enabling more robust pixels with fill factor greater than 90% and less complicated fabrication process. The sensor is fabricated using a Silicon-On-Glass (SOG) process. For the first time in t...
Efficient algorithms for convolutional inverse problems in multidimensional imaging
Doğan, Didem; Öktem, Figen S.; Department of Electrical and Electronics Engineering (2020)
Computational imaging is the process of indirectly forming images from measurements using image reconstruction algorithms that solve inverse problems. In many inverse problems in multidimensional imaging such as spectral and depth imaging, the measurements are in the form of superimposed convolutions related to the unknown image. In this thesis, we first provide a general formulation for these problems named as convolutional inverse problems, and then develop fast and efficient image reconstruction algorith...
Numerical simulation of scour at the rear side of a coastal revetment
Şentürk, Barış Ufuk; Guler, Hasan Gokhan; Baykal, Cüneyt (2023-05-01)
This paper presents the results of a numerical modeling study on the scouring of unprotected rear side material of a rubble mound coastal revetment due to the overtopping of solitary-like waves utilizing a coupled hydro-morphodynamic computational fluid dynamics (CFD) model. Three cases having various wave heights are tested with six different turbulence models together with different wall functions. The hydrodynamic results (free-surface elevations, overtopping volumes, and jet thicknesses) and morphologic...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Amiri Hazaveh, “Experimental investigation of the turbulent near wake flow field of multiscale/fractal grids,” Ph.D. - Doctoral Program, Middle East Technical University, 2018.