Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Repair and strengthening of reinforced concrete columns with CFRPs
Date
2010-8-17
Author
Ozcan, Okan
Binici, Barış
Canbay, Erdem
Ozcebe, Guney
Metadata
Show full item record
Item Usage Stats
235
views
0
downloads
Cite This
In this study, seismic retrofitting of undamaged and moderately damaged RC columns with CFRP was investigated. The experimental program was conducted on five RC columns with inadequate tie spacing, 90-degree hooks at tie ends, and plain (undeformed) reinforcing bars. Columns were tested under a constant axial load of 27% of axial capacity and under reversed lateral cyclic loading. The primary objective of this study was to investigate the influence of sustained axial load during repairing, damage, and corner-rounding radius of CFRP wraps on the seismic performance of RC columns. Improved performance in terms of ductility, dissipated energy, and secant-stiffness degradation was observed for the CFRP strengthened columns. Reducing the corner-rounding radius deteriorated the seismic behavior of the columns, while the stiffness degradation response remained unaffected. The sustained axial load during repairing had only minor effect on column behavior. After CFRP repairing, the increase in yield drift ratio and curvature was observed to be in proportion with the corresponding consumed ductility values during damage cycles. A drift-based design equation for FRP repaired columns was proposed that considers the damage amount and axial load level as the major parameters as consistent with the experimental results.
Subject Keywords
Reinforced concrete column
,
Repair
,
Strengthening
,
FRP
URI
https://hdl.handle.net/11511/28119
Journal
Journal of Reinforced Plastics and Composites
DOI
https://doi.org/10.1177/0731684410376332
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Seismic upgrading of reinforced concrete frames with structural steel elements
Özçelik, Ramazan; Binici, Barış; Department of Civil Engineering (2011)
This thesis examines the seismic internal retrofitting of existing deficient reinforced concrete (RC) structures by using structural steel members. Both experimental and numerical studies were performed. The strengthening methods utilized with the scope of this work are chevron braces, internal steel frames (ISFs), X-braces and column with shear plate. For this purpose, thirteen strengthened and two as built reference one bay one story portal frame specimens having 1/3 scales were tested under constant grav...
Seismic strengthening of rectangular reinforced concrete columns using fiber reinforced polymers
ÖZCAN, OKAN; Binici, Barış; Ozcebe, Guney (2010-04-01)
In recent years, fiber-reinforced polymers have been widely utilized to improve the seismic performance of deficient RC columns. In this study, the flexural behavior of CFRP strengthened rectangular RC columns with plain bars and insufficient confining steel was investigated Five specimens, representing a typical deficient building column with poor transverse reinforcement detailing and low concrete strength, were tested under cyclic displacement excursions and constant axial load. The beneficial effect of ...
Seismic behavior of autoclaved aerated concrete reinforced vertical panel buildings
Gökmen, Furkan; Binici, Barış; Department of Civil Engineering (2017)
In this study, the seismic behavior of Autoclaved Aerated Concrete (AAC) reinforced panel walls and buildings was investigated. The structural members were investigated under cyclic lateral loading and axial load and the results were compared with the previous tests. The main objective of this study was to provide recommendations for nonlinear analysis of the reinforced AAC panel walls and buildings. OpenSees plat-form was chosen as the computational platform. The walls were modeled with fiber sections. The...
Plastic rotation capacity of RC columns under biaxial seismic demands
Özcan, Okan; Binici, Barış (2023-03-01)
Seismic performance of reinforced concrete (RC) columns should be evaluated considering biaxial demands for a more realistic assessment. However, most of the current seismic assessment regulations stipulate rotation capacity estimations considering only uniaxial bending test database. The effect of seismic demands in one direction may have a detrimental effect in the deformation capacity of the other direction. In the past studies, the influence of biaxial loading patterns/paths/histories, axial load level,...
Seismic Retrofit of Deficient RC Structures with Internal Steel Frames
ÖZÇELİK, RAMAZAN; Akpinar, Ugur; Binici, Barış (2011-12-01)
This paper describes an experimental study on internal steel frames (ISFs) to retrofit seismically deficient reinforced concrete (RC) frames. One reference and six strengthened frame specimens were tested under constant gravity load and cyclic lateral displacement excursions. Installation of the ISF with and without anchors to the RC frame was examined. Test results showed that the snug tight ISF installed inside an RC frame may suffice to realize the benefit of implementing ISFs. If the horizontal shear st...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Ozcan, B. Binici, E. Canbay, and G. Ozcebe, “Repair and strengthening of reinforced concrete columns with CFRPs,”
Journal of Reinforced Plastics and Composites
, pp. 3411–3424, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/28119.