Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A new method to determine dynamically equivalent finite element models of aircraft structures from modal test data
Date
2012-8
Author
Karaağaçlı, Taylan
Yıldız, Erdinç N.
Özgüven, Hasan Nevzat
Metadata
Show full item record
Item Usage Stats
311
views
0
downloads
Cite This
Flutter analysis is a major requirement to predict safe flight envelops and to decide on flutter testing conditions of newly designed or modified aircraft structures. In order to achieve reliable flutter analysis of an aircraft structure, it is necessary to obtain a good correlation between its finite element (FE) model and experimental modal data. Currently available model updating methods require construction of a detailed initial FE model in order to achieve convergence of the modes obtained from updated FE model to their experimental counterparts. If the updating procedure is not carried out by the original design team of the aircraft structure but a subsidiary company that makes certain modification on it, construction of an appropriate initial FE model from scratch becomes a tedious task requiring considerable amount of engineering work. To overcome the foregoing problem, this paper presents a new method that aims to derive dynamically equivalent FE model of an aircraft structure directly from its experimental modal data. The application of the method is illustrated with two case studies. In the first case study, the performance of the method is tested with the modal test data of a benchmark structure built to simulate dynamic behavior of an airplane, namely GARTEUR SM-AG 19 test bed, and very satisfactory results are obtained: the first 10 elastic FE modes of the test bed closely correlate with experimental data. In the second case study, the method is applied to the modal test data obtained from ground vibration test (GVT) of a real aircraft. In this application, it is observed that only the first 4 modes of the resultant FE model correlate well with experimental data. It is concluded that the method suggested works perfectly well for simple structures like GARTEUR test bed, and it gives quite promising results when applied to real aircraft structures.
Subject Keywords
FE models from modal data
,
Aircraft model updating
,
Model updating
,
Identifying spatial matrices
,
Aircraft GVT
URI
https://hdl.handle.net/11511/28128
Journal
Mechanical Systems and Signal Processing
DOI
https://doi.org/10.1016/j.ymssp.2012.04.002
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Determination of dynamically equivalent fe models of aircraft structures by using modal test data
Karaağaçlı, Taylan; Özgüven, Hasan Nevzat; Yıldız, Erdinç N.; Department of Mechanical Engineering (2010)
Reliable flutter analysis of aircraft structures is a major requirement to determine safe flight envelops. Dynamically equivalent finite element model of an aircraft structure correlating well with experimental modal is a major requirement for a reliable flutter analysis. Currently available model updating techniques require enormous time and engineering work to achieve appropriate finite element models of aircraft structures. The method developed within the scope of this thesis work aims to remove importan...
A VERSATILE DYNAMIC ROTOR AND PROPELLER MODEL FOR ELECTRIC VTOL SIMULATION APPLICATIONS
Esmek, Ceren Cansu; Sezer Uzol, Nilay; Department of Aerospace Engineering (2022-9-02)
This thesis presents a versatile, dynamic rotor/propeller model for various all-electric and hybrid-electric vertical takeoff and landing aircraft (eVTOL) simulation applications. The goal is to reflect the transformative potential of eVTOL to carry different types of thrust sources using one generic mathematical model. The thrust sources may include propellers, articulated rotors, ducted rotors, and coaxial rotors. These rotors are modeled based on blade element theory. Rotor inflow is estimated using the ...
An enhanced analytical model for residual stress prediction in machining
Lazoglu, I.; Ulutan, D.; Alaca, B. E.; Engin, S.; Kaftanoglu, B. (2008-01-01)
The predictions of residual stresses are most critical on the machined aerospace components for the safety of the aircraft. In this paper, an enhanced analytic elasto-plastic model is presented using the superposition of thermal and mechanical stresses on the workpiece, followed by a relaxation procedure. Theoretical residual stress predictions are verified experimentally with X-ray diffraction measurements on the high strength engineering material of Waspaloy that is used critical parts such as in aircraft...
Flight flutter testing and aeroelastic stability of aircraft
Kayran, Altan (2007-01-01)
Purpose - This paper sets out to provide a general review of the flight flutter test techniques utilized in aeroelastic stability flight testing of aircraft, and to highlight the key items involved in flight flutter testing of aircraft, by emphasizing all the main information processed during the flutter stability verification based on flight test data.
In-flight Ice formation simulation on finite wings and air intakes
Özgen, Serkan (2012-04-01)
In the present article, in-flight ice formation on finite wings and air intakes of low-speed aircraft are numerically studied. The approach to the problem involves calculation of the velocity field using a three-dimensional panel method. Using the calculated velocity field, the droplet trajectories and droplet impact locations are computed yielding the droplet collection efficiency distribution. In the next step, convective heat transfer coefficient distributions around the geometries are calculated using a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Karaağaçlı, E. N. Yıldız, and H. N. Özgüven, “A new method to determine dynamically equivalent finite element models of aircraft structures from modal test data,”
Mechanical Systems and Signal Processing
, pp. 94–108, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/28128.