Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Oligocene subduction-related plutonism in the Nodoushan area, Urumieh-Dokhtar magmatic belt: Petrogenetic constraints from U–Pb zircon geochronology and isotope geochemistry
Date
2019-3
Author
Shahsavari Alavijeh, Badieh
Rashidnejad-Omran, Nematollah
Toksoy Köksal, Fatma
Xu, Wenliang
Ghalamghash, Jalil
Metadata
Show full item record
Item Usage Stats
25
views
0
downloads
Geochemical data and Sr-Nd isotopes of the host rocks and magmatic microgranular enclaves (MMEs) collected from the Oligocene Nodoushan Plutonic Complex (NPC) in the central part of the Urumieh -Dokhtar Magmatic Belt (UDMB) were studied in order to better understand the magmatic and geodynamic evolution of the UDMB. New U-Pb zircon ages reveal that the NPC was assembled incrementally over ca. 5 m.y., during two main episodes at 30.52 +/- 0.11 Ma and 30.06 +/- 0.10 Ma in the early Oligocene (middle Rupelian) for dioritic and granite intrusives, and at 24.994 +/- 0.037 Ma and 24.13 +/- 0.19 Ma in the late Oligocene (latest Chattian) for granodioritic and diorite porphyry units, respectively. The spherical to ellipsoidal enclaves are composed of diorite to monzodiorite and minor gabbroic diorite (SiO2 = 47.73-57.36 wt.%; Mg# = 42.15-53.04); the host intrusions are mainly granite, granodiorite and diorite porphyry (SiO2 = 56.51-72.35 wt.%; Mg# = 26.29-50.86). All the samples used in this study have similar geochemical features, including enrichment in large ion lithophile elements (LILEs, e.g. Rb, Ba, Sr) and light rare earth elements (LREEs) relative to high field strength elements (HFSEs) and heavy rare earth elements (HREEs). These features, combined with a relative depletion in Nb, Ta, Ti and P, are characteristic of subduction-related magmas. Isotopic data for the host rocks display I-Sr = 0.705045-0.707959, epsilon(Nd)(t) = -3.23 to +3.80, and the Nd model ages (T-DM) vary from 0.58 Ga to 1.37 Ga. Compared with the host rocks, the MMEs are relatively homogeneous in isotopic composition, with ISr ranging from 0.705513 to 0.707275 and epsilon(Nd)(t) from -1.46 to 4.62. The MMEs have T-DM ranging from 0.49 Ga to 1.39 Ga. Geochemical and isotopic similarities between the MMEs and their host rocks demonstrate that the enclaves have mixed origins and were most probably formed by interactions between the lower crust- and mantle-derived magmas. Geochemical data, in combination with geodynamic evidence, suggest that a basic magma was derived from an enriched subcontinental lithospheric mantle (SCLM), presumably triggered by the influx of the hot asthenosphere. This magma then interacted with a crustal melt that originated from the dehydration melting of the mafic lower crust at deep crustal levels. Modeling based on Sr-Nd isotope data indicate that similar to 50% to 90% of the lower crust- derived melt and similar to 10% to 50% of the mantle-derived mafic magma were involved in the genesis of the early Oligocene magmas. In contrast, similar to 45%-65% of the mantle-derived mafic magma were incorporated into the lower crust- derived magma (similar to 35%-55%) that generated the late Oligocene hybrid granitoid rocks. Early Oligocene granitoid rocks contain a higher proportion of crustal material compared to those that formed in the late Oligocene. It is reasonable to assume that lower crust and mantle interaction processes played a significant role in the genesis of these hybridgranitoid bodies, where melts undergoing fractional crystallization along with minor amounts of crustal assimilation could ascend to shallower crustal levels and generate a variety of rock types ranging from diorite to granite.
Subject Keywords
Urumieh-Dokhtar magmatic belt
,
Granitoid rocks
,
Subduction
,
Zircon U-Pb ages
,
Radiogenic isotopes
,
Central Iran
URI
https://hdl.handle.net/11511/28145
Journal
Geoscience Frontiers
DOI
https://doi.org/10.1016/j.gsf.2018.03.017
Collections
Department of Geological Engineering, Article