Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Observation of Zeroth-Order Band Gaps in Negative-Refraction Photonic Crystal Superlattices at Near-Infrared Frequencies
Download
index.pdf
Date
2009-5-22
Author
Kocaman, Serdar
Panoiu, N. C.
McMillan, J. F.
Yu, M. B.
Osgood, R. M.
Kwong, D. L.
Wong, C. W.
Metadata
Show full item record
Item Usage Stats
229
views
116
downloads
Cite This
We present the first observations of zero-n over bar band gaps in photonic crystal superlattices consisting of alternating stacks of negative-index photonic crystals and positive-index dielectric materials in the near-infrared range. Guided by ab initio three-dimensional numerical simulations, the fabricated nanostructured superlattices demonstrate the presence of zeroth-order gaps in remarkable agreement with theoretical predictions across a range of different superlattice periods and unit cell variations. These volume-averaged zero-index superlattice structures present a new type of photonic band gap, with the potential for complete wave front control for arbitrary phase delay lines and open cavity resonances.
Subject Keywords
Experimental-verification
,
Handed materials
,
Index
,
Light
,
Metamaterials
,
Superlens
,
Permeability
,
Propagation
URI
https://hdl.handle.net/11511/28375
Journal
Physical Review Letters
DOI
https://doi.org/10.1103/physrevlett.102.203905
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Analysis of Dielectric Photonic-Crystal Problems With MLFMA and Schur-Complement Preconditioners
Ergül, Özgür Salih; Gurel, Levent (Institute of Electrical and Electronics Engineers (IEEE), 2011-3)
We present rigorous solutions of electromagnetics problems involving 3-D dielectric photonic crystals (PhCs). Problems are formulated with recently developed surface integral equations and solved iteratively using the multilevel fast multipole algorithm (MLFMA). For efficient solutions, iterations are accelerated via robust Schur-complement preconditioners. We show that complicated PhC structures can be analyzed with unprecedented efficiency and accuracy by an effective solver based on the combined tangenti...
Observation of coherent nonlinear interactions in the ion velocity distribution function
Uzun Kaymak, İlker Ümit (2006-11-01)
Using laser induced fluorescence (LIF) and higher order spectral analysis, we present the first measurements of phase space resolved coherent nonlinear interactions among the components of low frequency density fluctuations, (omega <=omega(ci)), in a linearly magnetized device. The bicoherence calculations employing the two point correlation technique suggest that there are two different coherent nonlinear wave-wave interactions in the measured spectrum. The first one, having a short correlation length and ...
Study of the Influence of Transition Metal Atoms on Electronic and Magnetic Properties of Graphyne Nanotubes Using Density Functional Theory
Alaei, Sholeh; Jalili, Seifollah; Erkoç, Şakir (Informa UK Limited, 2015-01-01)
Density functional theory calculations were used to study the adsorption of three transition metal atoms (Fe, Co, and Ni) on the external surface of two zigzag and two armchair graphyne nanotubes. The most stable position for the adsorption of all three metal atoms on all nanotubes is on the acetylenic ring. The metal atom remains in the plane of the acetylenic ring and makes six bonds with neighboring carbon atoms. Fe and Co complexes are magnetic and show different properties such as metal, semimetal, hal...
Investigation of carrier scattering mechanisms in TIInS2 single crystals by Hall effect measurements
Qasrawi, AF; Hasanlı, Nızamı (Wiley, 2004-05-01)
TlInS2 single crystals are studied through the conductivity and Hall effect measurements in the temperature regions of 100-400 and 170-400 K, respectively. An anomalous behavior of Hall voltage, which changes sign below 315 K, is interpreted through the existence of deep donor impurity levels that behave as acceptor levels when are empty. The hole and electron mobility are limited by the hole- and electron-phonon short range interactions scattering above and below 315 K, respectively. An energy level of 35 ...
Zero phase delay in negative-refractive-index photonic crystal superlattices
Kocaman, Serdar; Hsieh, P.; McMillan, J.F.; Biris, C.G.; Panoiu, N.C.; Yu, M.B.; Kwong, D.L.; Stein, A.; Wong, C.W. (2011-08-01)
We show that optical beams propagating in path-averaged zero-index photonic crystal superlattices can have zero phase delay. The nanofabricated superlattices consist of alternating stacks of negative index photonic crystals and positive index homogeneous dielectric media, where the phase differences corresponding to consecutive primary unit cells are measured with integrated Mach-Zehnder interferometers. These measurements demonstrate that at path-averaged zero-index frequencies the phase accumulation remai...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Kocaman et al., “Observation of Zeroth-Order Band Gaps in Negative-Refraction Photonic Crystal Superlattices at Near-Infrared Frequencies,”
Physical Review Letters
, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/28375.