Numerical solution of solidification in a square prism using an algebraic grid generation technique

2003-12-1
The solidification of an infinitely long square prism was analyzed numerically. A front fixing technique along with an algebraic grid generation scheme was used, where the finite difference form of the energy equation is solved for the temperature distribution in the solid phase and the solid-liquid interface energy balance is integrated for the new position of the moving solidification front. Results are given for the moving solidification boundary with a circular phase change interface. An algebraic grid generation scheme was developed for two-dimensional domains, which generates grid points separated by equal distances in the physical domain. The current scheme also allows the implementation of a finer grid structure at desired locations in the domain. The method is based on fitting a constant arc length mesh in the two computational directions in the physical domain. The resulting simultaneous, nonlinear algebraic equations for the grid locations are solved using the Newton-Raphson method for a system of equations. The approach is used in a two-dimensional solidification problem, in which the liquid phase is initially at the melting temperature, solved by using a front-fixing approach. The difference of the current study lies in the fact that front fixing is applied to problems, where the solid-liquid interface is curved such that the position of the interface, when expressed in terms of one of the coordinates is a double valued function. This requires a coordinate transformation in both coordinate directions to transform the complex physical solidification domain to a Cartesian, square computational domain. Due to the motion of the solid-liquid interface in time, the computational grid structure is regenerated at every time step.
Heat and Mass Transfer

Suggestions

Systematic Analysis on the Optical Properties of Chiral Metamaterial Slab for Microwave Polarization Control
Comez, I.; KARAASLAN, MUHARREM; Dincer, F.; KARADAĞ, FATOŞ; Sabah, C. (2015-05-01)
Theoretical and numerical of investigation of the chiral slab exhibiting polarization rotation is presented in detail. The effects of the chirality, thickness of medium, dielectric constant, and incident angle are analyzed in order to display the characteristic features of the chiral slab both for TE and TM incident waves. The chiral slab then is realized by using a full wave EM simulation software in order to validate the numerical results in which the numerical and simulation results are in good agreement...
Numerical Solution of Multi-scale Electromagnetic Boundary Value Problems by Utilizing Transformation-Based Metamaterials
Ozgun, Ozlem; Kuzuoğlu, Mustafa (2011-06-23)
We present numerical solution techniques for efficiently handling multi-scale electromagnetic boundary value problems having fine geometrical details or features, by utilizing spatial coordinate transformations. The principle idea is to modify the computational domain of the finite methods (such as the finite element or finite difference methods) by suitably placing anisotropic metamaterial structures whose material parameters are obtained by coordinate transformations, and hence, to devise easier and effic...
Interacting electrons in a 2D quantum dot
Akman, N; Tomak, Mehmet (1999-04-01)
The exact numerical diagonalization of the Hamiltonian of a 2D circular quantum dot is performed for 2, 3, and 4 electrons. The results an compared with those of the perturbation theory. Our numerical results agree reasonably well for small values of the dimensionless coupling constant lambda = a/a(B) where a is the dot radius and a(B) is the effective Bohr radius. Exact diagonalization results are compared with the classical predictions, and they are found to be almost coincident for large lambda values.
Modeling Electromagnetic Scattering from Random Array of Objects by Form Invariance of Maxwell's Equations
ÖZGÜN, ÖZLEM; Kuzuoğlu, Mustafa (2015-07-24)
Electromagnetic scattering from a random array of objects is modeled by using special coordinate transformations that are based on the form invariance property of Maxwell's equations. The main motivation is to perform multiple realizations of Monte Carlo simulations corresponding to different positions of objects in an efficient way by using a single mesh. This is achieved by locating transformation media within the computational domain. The proposed approach is applied to finite element method and tested b...
Entangled Harmonic Oscillators and Space-Time Entanglement
Başkal, Sibel; Kim, Young S.; Noz, Marilyn E. (MDPI AG, 2016-6-28)
The mathematical basis for the Gaussian entanglement is discussed in detail, as well as its implications in the internal space-time structure of relativistic extended particles. It is shown that the Gaussian entanglement shares the same set of mathematical formulas with the harmonic oscillator in the Lorentz-covariant world. It is thus possible to transfer the concept of entanglement to the Lorentz-covariant picture of the bound state, which requires both space and time separations between two constituent p...
Citation Formats
Z. Dursunkaya, “Numerical solution of solidification in a square prism using an algebraic grid generation technique,” Heat and Mass Transfer, pp. 91–97, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/28558.