A projection-based stabilized finite element method for steady-state natural convection problem

Download
2011-9
Çıbık, Aytekin
Kaya Merdan, Songül
We formulate a projection-based stabilization finite element technique for solving steady-state natural convection problems. In particular, we consider heat transport through combined solid and fluid media. This stabilization does not act on the large flow structures. Based on the projection stabilization idea, finite element error analysis of the problem is investigated and optimal errors for the velocity, temperature and pressure are established. We also present some numerical tests which both verify the theoretical predictions and demonstrate the methodʼs promise.
Journal of Mathematical Analysis and Applications

Suggestions

A two-grid stabilization method for solving the steady-state Navier-Stokes equations
Kaya Merdan, Songül (Wiley, 2006-05-01)
We formulate a subgrid eddy viscosity method for solving the steady-state incompressible flow problem. The eddy viscosity does not act on the large flow structures. Optimal error estimates are obtained for velocity and pressure. The numerical illustrations agree completely with the theoretical results. (C) 2005 Wiley Periodicals, Inc.
A stabilized finite element method for the two-field and three-field Stokes eigenvalue problems
Türk, Önder; Codina, Ramon (2016-10-01)
In this paper, the stabilized finite element approximation of the Stokes eigenvalue problems is considered for both the two field (displacement pressure) and the three-field (stress displacement pressure) formulations. The method presented is based on a subgrid scale concept, and depends on the approximation of the unresolvable scales of the continuous solution. In general, subgrid scale techniques consist in the addition of a residual based term to the basic Galerkin formulation. The application of a stand...
A subgrid stabilization finite element method for incompressible magnetohydrodynamics
Belenli, Mine A.; Kaya Merdan, Songül; Rebholz, Leo G.; Wilson, Nicholas E. (2013-07-01)
This paper studies a numerical scheme for approximating solutions of incompressible magnetohydrodynamic (MHD) equations that uses eddy viscosity stabilization only on the small scales of the fluid flow. This stabilization scheme for MHD equations uses a Galerkin finite element spatial discretization with Scott-Vogelius mixed finite elements and semi-implicit backward Euler temporal discretization. We prove its unconditional stability and prove how the coarse mesh can be chosen so that optimal convergence ca...
The finite element method over a simple stabilizing grid applied to fluid flow problems
Aydın, Selçuk Han; Tezer-Sezgin, Münevver; Department of Scientific Computing (2008)
We consider the stabilized finite element method for solving the incompressible Navier-Stokes equations and the magnetohydrodynamic (MHD) equations in two dimensions. The well-known instabilities arising from the application of standard Galerkin finite element method are eliminated by using the stabilizing subgrid method (SSM), the streamline upwind Petrov-Galerkin (SUPG) method, and the two-level finite element method (TLFEM). The domain is discretized into a set of regular triangular elements. In SSM, the...
A Numerical Model for Investigating the Effect of Rough Surface Parameters on Radar Cross Section Statistics
Kuzuoğlu, Mustafa (2017-07-14)
Electromagnetic scattering from rough surfaces is modeled by combining the periodic finite element method and the transformation electromagnetics approach. The behavior of the radar cross section (RCS) at both specular and backscattering directions is analyzed as a function of rms height and correlation length with the help of Monte Carlo simulations. The concept of backscattering enhancement is illustrated, and some conclusions are drawn about the RCS statistics.
Citation Formats
A. Çıbık and S. Kaya Merdan, “A projection-based stabilized finite element method for steady-state natural convection problem,” Journal of Mathematical Analysis and Applications, pp. 469–484, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/28572.