Asymmetric transmission of linearly polarized electromagnetic waves using chiral metamaterials with constant chirality over a certain frequency band

2014-12-30
Akgöl, Oğuzhan
Dinçer, Furkan
Karaaslan, Muharrem
Ünal, Emin
Sabah, Cumali
In this study, a dynamic chiral metamaterial (MTM) structure leading to an asymmetric electromagnetic (EM) wave transmission for linear polarization is presented. The structure is composed of square-shaped resonator with gaps on both sides of a dielectric substrate with a certain degree of rotation. The dynamic structure is adjustable via various parameters to fit any desired frequency ranges. Theoretical and experimental analysis of the proposed structure are conducted and given in detail. The suggested model can provide constant chirality over a certain frequency band and thus, it can be used to design myriad novel devices such as EM transmission and antireflection filters, and polarization rotators for desired frequency
Modern Physıcs Letters B

Suggestions

New generation planar chiral metamaterials with small and constant chirality over a certain frequency band
Dincer, Furkan; Karaaslan, Muharrrem; Akgol, Oguzhan; ÜNAL, EMİN; Demirel, Ekrem; Sabah, Cumali (2015-01-10)
Chiral metamaterial (MTM) researchers generally concentrate and aim to obtain large chirality with optical activity in certain frequencies. However, new generation planar chiral MTM which have small and constant/flat chirality over a certain frequency band have not queried by this time in literature. In fact, this area is mostly ignored by researchers. This study, first one according to best of our knowledge in the literature, is investigating the small and constant/fixed chirality and focuses on the new ge...
Dynamic and tunable chiral metamaterials with wideband constant chirality over a certain frequency band
Dincer, Furkan; KARAASLAN, MUHARREM; AKGÖL, OĞUZHAN; ÜNAL, EMİN; Sabah, Cumali (2015-01-01)
We present numerically and experimentally a dynamic chiral metamaterial (MTM) that creates strong optical activity and circular dichroism. The proposed tunable structure has a very simple and more efficient configuration which introduces flexibility to adjust its EM properties. In addition, it gives a giant negative refractive index due to the high chirality. Our experimental results confirm the strong optical activity for a wide frequency range and agree with the simulation results. Moreover, the proposed ...
Equipotential projection based magnetic resonance electrical impedance tomography (mr-eit) for high resolution conductivity imaging
Özdemir, Mahir Sinan; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2003)
In this study, a direct reconstruction algorithm for Magnetic Resonance Electrical Impedance Tomography (MR-EIT) is proposed and experimentally implemented for high resolution true conductivity imaging. In MR-EIT, elec trical impedance tomography (EIT) and magnetic resonance imaging (MRI) are combined together. Current density measurements are obtained making use of Magnetic Resonance Current Density Imaging (MR-CDI) techniques and peripheral potential measurements are determined using conventional EIT tech...
Systematic Analysis on the Optical Properties of Chiral Metamaterial Slab for Microwave Polarization Control
Comez, I.; KARAASLAN, MUHARREM; Dincer, F.; KARADAĞ, FATOŞ; Sabah, C. (2015-05-01)
Theoretical and numerical of investigation of the chiral slab exhibiting polarization rotation is presented in detail. The effects of the chirality, thickness of medium, dielectric constant, and incident angle are analyzed in order to display the characteristic features of the chiral slab both for TE and TM incident waves. The chiral slab then is realized by using a full wave EM simulation software in order to validate the numerical results in which the numerical and simulation results are in good agreement...
Full-Wave Computational Analysis of Optical Chiral Metamaterials
Guler, Sadri; Solak, Birol; Gür, Uğur Meriç; Ergül, Özgür Salih (2017-09-27)
We present computational analysis of optical chiral metamaterials that consist of helical metallic elements. At optical frequencies, metals are modeled as penetrable objects with plasmonic properties. A rigorous implementation based on boundary element methods and the multilevel fast multipole algorithm is used for efficient and accurate analysis of three-dimensional structures. Numerical results demonstrate interesting polarization-rotating characteristics of such arrays with helical elements, as well as t...
Citation Formats
O. Akgöl, F. Dinçer, M. Karaaslan, E. Ünal, and C. Sabah, “Asymmetric transmission of linearly polarized electromagnetic waves using chiral metamaterials with constant chirality over a certain frequency band,” Modern Physıcs Letters B, 2014, Accessed: 00, 2020. [Online]. Available: https://www.worldscientific.com/doi/abs/10.1142/S0217984914502509.