Nanotribological properties of the h-BN/Au(111) interface: a DFT study

2019-11-21
Baksi, Merve
Toffoli, Daniele
Gülseren, Oğuz
Üstünel, Hande
Understanding the quantum-mechanical origins of friction forces has become increasingly important in the past decades with the advent of nanotechnology. At the nanometer scale, the universal Amontons-Coulomb laws cease to be valid, and each interface requires individual scrutiny. Because of the well-known lubricating properties of two-dimensional materials, a significant amount of research has been performed in an effort to understand interfaces they form with one another. However, the interfaces between these two-dimensional materials and metals red from a tribological point of view, important for such applications as friction force microscopy, have yet to be thoroughly investigated. In the current work, we present a detailed density functional theory investigation of the hexagonal BN/Au(111) interface. Because of a good agreement between their characteristic lengths, a high level of commensurability is achieved in a suitably constructed model between the bulk surfaces of the two materials. As a result of our calculations, we find that the corrugation in the potential energy surface and the lateral forces in this interface are low compared to other similar interfaces. The friction coefficient falls rapidly with increasing load down to 0.005 for the largest loads considered. In contrast, Au-n clusters (n = 1, 4, 13, and 19) sliding on the h-BN surface exhibit much larger lateral forces, indicating strong size and edge effects. The reduction of energy corrugation in going from the Au-4 to the Au-19 cluster may already indicate a decreasing trend with increasing size even at this very small scale.
Journal Of Physıcal Chemıstry C

Suggestions

Tribology at the atomic scale with density functional theory
Toffoli, Hande; Toffoli, Daniele (2022-06-01)
© 2022 IOP Publishing Ltd.Understanding the quantum mechanical origins of friction forces has become increasingly important in the past decades with the advent of nanotechnology. At the nanometer scale, the universal Amontons-Coulomb laws cease to be valid and each interface requires individual scrutiny. Furthermore, measurements required to understand friction at the atomic scale are riddled with artificial factors such as the properties of the friction force microscope, effect of the environment, and the ...
Nanoscale active tuning of the second harmonic generation efficiency in semiconductors from super-low to gigantic values
Asirim, Ozum Emre; Kuzuoğlu, Mustafa (2022-08-01)
Second harmonic generation efficiency (SHGE) strongly depends on the length of the interaction material along the beam propagation axis. Since a nanoscale interaction length is considered too short even in the optical wavelength scale, the attained SHGE through nanomaterials is usually too low to be of practical use. In this study, it will be shown that by properly adjusting the conduction-band electron density in a semiconductor nanomaterial under a certain optical pumping rate (active tuning), the SHGE ca...
Theoretical investigation of the nanotribological properties of the hexagonal boron nitride and gold interfaces
Özcan, Gize; Toffoli, Hande; Department of Physics (2020)
Frictional properties of two-dimensional structures on the nanoscale have gained importance, especially in the last decades, and a considerable amount of research is carried on to understand the interaction between their interfaces with well known lubricants. In industrial developments, these materials’ interfacial properties on metals have great importance. Therefore, in this thesis, we theoretically investigated the hexagonal BN and Au(111) interface with using molecular dynamics simulation. Calculation r...
Spatial instability of a wall-bounded flow with fluid injection through porous walls
Köken, Ozan; Tarman, Hakan I.; Department of Mechanical Engineering (2019)
One of the important and yet least understood fields in fluid mechanics research more than a century is hydrodynamic stability. The main objectives in this field are to investigate the breakdown of laminar flows, their subsequent development as the flow evolves along downstream and eventual transition to the fully turbulent flows. The origin of the turbulence and the transition from laminar to turbulent flow is of crucial importance for the whole science of fluid mechanics as well as aviation and marine ind...
Frequency Modulated Raman Spectroscopy
Greco, Silvio; Dal Zilio, Simone; Bek, Alpan; Lazzarino, Marco; Naumenko, Denys (2018-02-01)
The coupling of plasmonic and mechanical properties at the nanoscale is of great potential for the development of next generation devices capable to detect weak forces, mass changes, minute displacements and temperature induced effects. Both the transduction of mechanical motion to the scattered light fields in term of polarization or intensity modulation and plasmon-driven mechanical oscillations have already been demonstrated. Quasi static tunable hot spots have recently been designed and applied to surfa...
Citation Formats
M. Baksi, D. Toffoli, O. Gülseren, and H. Üstünel, “Nanotribological properties of the h-BN/Au(111) interface: a DFT study,” Journal Of Physıcal Chemıstry C, pp. 28411–28418, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/28648.