Tribology at the atomic scale with density functional theory

Toffoli, Hande
Toffoli, Daniele
© 2022 IOP Publishing Ltd.Understanding the quantum mechanical origins of friction forces has become increasingly important in the past decades with the advent of nanotechnology. At the nanometer scale, the universal Amontons-Coulomb laws cease to be valid and each interface requires individual scrutiny. Furthermore, measurements required to understand friction at the atomic scale are riddled with artificial factors such as the properties of the friction force microscope, effect of the environment, and the type of the substrate. It therefore proves difficult to isolate the actual behavior of interfaces from these effects. Electronic structure methods are an indispensable tool in understanding the details of interfaces, their interactions with lubricants, the environment and the support. In particular, density functional theory (DFT) has given large contributions to the field through accurate calculations of important properties such as the potential energy surfaces, shear strengths, adsorption of lubricant materials and the effect of the substrate. Although unable to tackle velocity-or temperature-dependent properties for which classical molecular dynamics is employed, DFT provides an affordable yet accurate means of understanding the quantum mechanical origins of the tribological behavior of interfaces in a parameter-free manner. This review attempts to give an overview of the ever-increasing literature on the use of DFT in the field of tribology. We start by summarizing the rich history of theoretical work on dry friction. We then identify the figures-of-merit which can be calculated using DFT. We follow by a summary of bulk interfaces and how to reduce friction via passivation and lubricants. The following section, namely friction involving two-dimensional materials is the focus of our review since these materials have gained increasing traction in the field thanks to the advanced manufacturing and manipulation techniques developed. Our review concludes with a brief touch on other interesting examples from DFT tribology literature such as rolling friction and the effect of photoexcitation in tribology.
Electronic Structure


Nanotribological properties of the h-BN/Au(111) interface: a DFT study
Baksi, Merve; Toffoli, Daniele; Gülseren, Oğuz; Üstünel, Hande (American Chemical Society (ACS), 2019-11-21)
Understanding the quantum-mechanical origins of friction forces has become increasingly important in the past decades with the advent of nanotechnology. At the nanometer scale, the universal Amontons-Coulomb laws cease to be valid, and each interface requires individual scrutiny. Because of the well-known lubricating properties of two-dimensional materials, a significant amount of research has been performed in an effort to understand interfaces they form with one another. However, the interfaces between th...
Density functional theory investigation on thickness and load dependency of friction force between graphene and au interfaces
Şentürk, Duygu Gizem; Toffoli, Hande; Department of Physics (2018)
As the investigation of materials at nano scale become possible with today's technology it is observed that some physical phenomenons have different characteristics at atomistic scale than macroscopic one because of the quantum mechanical effects. One of these physical processes that differs at nano scale is the friction force. While it is expected that the friction force to be independent of contact area and velocity according to Amontos-Coulomb laws, it was observed that it changes by the effect of some p...
Theoretical analysis of semiconductor surface passivation by adsorption of alkaline-earth metals and chalcogens
Srivastava, G. P.; AlZahrani, A. Z.; Usanmaz, D. (2012-08-15)
We begin with the concept of semiconductor surface passivation by adsorption of sub-monolayer atomic coverages. We then present a theoretical analysis of structural reconstruction and passivating behaviour of semiconductor surfaces upon sub-monolayer adsorption of alkaline-earth metals (group II atoms) and chalcogens (group VI atoms). Specific results are presented from first-principles calculations for Ca adsorption on Si(0 0 1) and Si(1 1 1), and S adsorption on GaAs(0 0 1). The role of chemical species o...
Structural vibration analysis of single walled carbon nanotubes with atom-vacancies
Doğan, İbrahim Onur; Yazıcıoğlu, Yiğit; Department of Mechanical Engineering (2010)
Recent investigations in nanotechnology show that carbon nanotubes (CNT) have one of the most significant mechanical, electrical and optical properties. Interactions between those areas like electrical, optical and mechanical properties are also very promising in both research and industrial fields. Those unique characteristics are built by mainly the atomistic structure of the carbon nanotubes. In this thesis, the effects of vacant atoms on single walled carbon nanotubes (SWCNT) are investigated using matr...
AB initio investigation of the nanotribological properties of MoS2/Au(111) interface
Doğan Dağlum, Ümi; Toffoli, Hande; Department of Physics (2020)
Microscopic system is not obey classic friction concept due to atomic interaction and quantum effect in nano scale such as van der Waals forces etc. Therefore, each system display different friction behavior so they should studied one by one. Nanotribology which is sub-field of tribology studies friction at the two dimensional structure such as graphene, silicen and TMD's material using Density Functional Theory. Moreover, atomic force microscopy (AFM) and friction force microscopy (FFM) are used reveal fri...
Citation Formats
H. Toffoli and D. Toffoli, “Tribology at the atomic scale with density functional theory,” Electronic Structure, vol. 4, no. 2, pp. 0–0, 2022, Accessed: 00, 2022. [Online]. Available: