Non-Einsteinian black holes in generic 3D gravity theories

2019-09-21
Gürses, Metin
Şisman, Tahsin Çağrı
Tekin, Bayram
The Banados-Teitelboim-Zanelli (BTZ) black hole metric solves the three-dimensional Einstein's theory with a negative cosmological constant as well as all the generic higher derivative gravity theories based on the metric; as such it is a universal solution. Here, we find, in all generic higher derivative gravity theories, new universal non-Einsteinian solutions obtained as Kerr-Schild type deformations of the BTZ black hole. Among these, the deformed nonextremal BTZ black hole loses its event horizon while the deformed extremal one remains intact as a black hole in any generic gravity theory.
Physical Review D

Suggestions

Gravitational waves and gravitational memory
Korkmaz, Ali; Tekin, Bayram; Department of Physics (2018)
We study the gravitational waves produced by compact binary systems in the linear regime of massless general relativity and calculate the gravitational memory produced by these waves on a detector.
Kundt solutions of minimal massive 3D gravity
Deger, Nihat Sadik; Sarıoğlu, Bahtiyar Özgür (AMER PHYSICAL SOC, ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA, 2015-11-04)
We construct Kundt solutions of minimal massive gravity theory and show that, similar to topologically massive gravity (TMG), most of them are constant scalar invariant (CSI) spacetimes that correspond to deformations of round and warped (A) dS. We also find an explicit non-CSI Kundt solution at the merger point. Finally, we give their algebraic classification with respect to the traceless Ricci tensor (Segre classification) and show that their Segre types match with the types of their counterparts in TMG.
Topological black holes and momentum four-vector
Pirinccioglu, Nurettin; Binbay, Figen; AÇIKGÖZ, İRFAN; Aydogdu, Oktay (World Scientific Pub Co Pte Lt, 2007-07-30)
We consider the energy momentum definition of the Moller in both general relativity and teleparallel gravity to evaluate the energy distribution (due to both matter and fields including gravitation) associated with the topological black holes with a conformally coupled scalar field. Our results show that the energy depends on the mass M and charge Q of the black holes and cosmological constant Lambda. In some special limits, the expression of the energy reduces to the energy of the well-known spacetimes. Th...
Autoparallel orbits in Kerr Brans-Dicke spacetimes
Cebeci, H; Dereli, T; Tucker, RW (2004-01-01)
The bounded orbital motion of a massive spinless test particle in the background of a Kerr Brans-Dicke geometry is analysed in terms of worldlines that are auto-parallels of different metric compatible spacetime connections. In one case the connection is that of Levi-Civita with zero-torsion. In the second case the connection has torsion determined by the gradient of the Brans-Dicke background scalar field. The calculations permit one in principle to discriminate between these possibilities.
Mass spectra of heavy quarkonia and B-c decay constant for static scalar-vector interactions with relativistic kinematics
Ikhdair, SM; Sever, Ramazan (World Scientific Pub Co Pte Lt, 2005-11-10)
We reproduce masses of the self-conjugate and non-self-conjugate mesons in the context of the spinless Salpeter equation taking into account the relativistic kinematics and the quark spins. The hyperfine splittings for the 2S charmonium and IS bottomonium are also calculated. Further, the pseudoscalar and vector decay constants of the Be meson and the unperturbed radial wave function at the origin are also calculated. We have obtained a local equation with a complete relativistic corrections to a class of t...
Citation Formats
M. Gürses, T. Ç. Şisman, and B. Tekin, “Non-Einsteinian black holes in generic 3D gravity theories,” Physical Review D, 2019, Accessed: 00, 2020. [Online]. Available: https://dx.doi.org/10.1103/PhysRevD.100.064053.