Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Mass spectra of heavy quarkonia and B-c decay constant for static scalar-vector interactions with relativistic kinematics
Download
index.pdf
Date
2005-11-10
Author
Ikhdair, SM
Sever, Ramazan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
3
downloads
We reproduce masses of the self-conjugate and non-self-conjugate mesons in the context of the spinless Salpeter equation taking into account the relativistic kinematics and the quark spins. The hyperfine splittings for the 2S charmonium and IS bottomonium are also calculated. Further, the pseudoscalar and vector decay constants of the Be meson and the unperturbed radial wave function at the origin are also calculated. We have obtained a local equation with a complete relativistic corrections to a class of three attractive static interaction potentials of the general form V(r) = -Ar-beta+kappa r(beta)+V-0, with beta= 1, 1/2, 3/4 decomposed into scalar and vector parts in the form Vv(r) = -Ar-beta + (1 - epsilon)kappa r(beta) and V-S(r) = epsilon kappa r(beta) + Vo; where 0 <= epsilon <= 1. We have used the shifted large-N-expansion technique (SLNET) to solve the reduced equation for the scalar (epsilon = 1), equal mixture of scalar-vector (epsilon = 1/2), and vector (epsilon = 0) confinement interaction kernels. The energy eigenvalues are carried out up to the third order approximation.
Subject Keywords
Nuclear and High Energy Physics
,
Astronomy and Astrophysics
,
Atomic and Molecular Physics, and Optics
URI
https://hdl.handle.net/11511/62471
Journal
INTERNATIONAL JOURNAL OF MODERN PHYSICS A
DOI
https://doi.org/10.1142/s0217751x05021294
Collections
Department of Physics, Article