Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An exact algorithm for the minimum squared load assignment problem
Date
2019-06
Author
Karsu, Özlem
Azizoğlu, Meral
Metadata
Show full item record
Item Usage Stats
627
views
0
downloads
Cite This
In this study, we consider an assignment problem with the objective to minimize the sum of squared loads over all agents. We provide mixed integer nonlinear and linear programming formulations of the problem and present a branch and bound algorithm for their solution. The results of our computational experiment have shown the satisfactory behavior of our branch and bound algorithm.
Subject Keywords
Computer Science
,
Squared load
,
Branch
,
Bound
URI
https://dx.doi.org/10.1016/j.cor.2019.02.011
https://hdl.handle.net/11511/28681
Journal
Computers and Operations Research
DOI
https://doi.org/10.1016/j.cor.2019.02.011
Collections
Department of Industrial Engineering, Article
Suggestions
OpenMETU
Core
A branch and bound algorithm to minimize the total flow time for m-machine permutation flowshop problems
Chung, CS; Flynn, J; Kirca, O (Elsevier BV, 2002-10-11)
The m-machine permutation flowshop problem with the total flow-time objective is a common scheduling problem, which is known to be NP-hard for m greater than or equal to 2. In this article, we develop a branch and bound algorithm to solve both the weighted and unweighted version of this problem. Our algorithm incorporates a new machine-based lower bound and a dominance test for pruning nodes. Computational experiments suggest that the algorithm can handle test problems with n less than or equal to 15. It al...
A Branch and Bound Algorithm for a Multi-Mode Project Scheduling Problem With a Single Non-Renewable Resource
Altıntaş, Cansu; Azizoğlu, Meral (2020-04-01)
In this paper, a project scheduling problem with multi-modes and a single non-renewable resource is considered. The resource is released in pre-specified times at pre-specified quantities. An activity can be executed at different modes where a mode is defined by a processing time and a resource requirement amount. The objective is to minimize the project completion time. A branch and bound algorithm that enumerates the partial solutions based on the mode assignment decisions is presented. The results of the...
A robust Island Parallel Genetic Algorithm for the Quadratic Assignment Problem
Tosun, Umut; Dokeroglu, Tansel; Coşar, Ahmet (2013-07-01)
The Quadratic Assignment Problem (QAP) is a difficult and important problem studied in the domain of combinatorial optimisation. It is possible to solve QAP instances with 10--20 facilities using exhaustive parallel algorithms within a few days on a cluster machine. However, large QAP instances with more than 100 facilities are not solvable using exhaustive techniques. We have explored a variety of Genetic Algorithm crossover operators for this problem and verified its performance experimentally using well-...
Bicriteria Multiresource Generalized Assignment Problem
Karsu, Ozlem; Azizoğlu, Meral (2014-12-01)
In this study, we consider a bicriteria multiresource generalized assignment problem. Our criteria are the total assignment load and maximum assignment load over all agents. We aim to generate all nondominated objective vectors and the corresponding efficient solutions. We propose several lower and upper bounds and use them in our optimization and heuristic algorithms. The computational results have shown the satisfactory behaviors of our approaches. (c) 2014 Wiley Periodicals, Inc. Naval Research Logistics...
An algorithm for estimating Box–Cox transformation parameter in ANOVA
Dag, Osman; İlk Dağ, Özlem (Informa UK Limited, 2016-8-5)
In this study, we construct a feasible region, in which we maximize the likelihood function, by using Shapiro-Wilk and Bartlett's test statistics to obtain Box-Cox power transformation parameter for solving the issues of non-normality and/or heterogeneity of variances in analysis of variance (ANOVA). Simulation studies illustrate that the proposed approach is more successful in attaining normality and variance stabilization, and is at least as good as the usual maximum likelihood estimation (MLE) in estimat...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Karsu and M. Azizoğlu, “An exact algorithm for the minimum squared load assignment problem,”
Computers and Operations Research
, pp. 76–90, 2019, Accessed: 00, 2020. [Online]. Available: https://dx.doi.org/10.1016/j.cor.2019.02.011.