Air and oxy-fuel combustion behaviour of petcoke/lignite blends

Yuzbasi, Nur Sena
Selçuk, Nevin
The pyrolysis and combustion behaviour of a petroleum coke (petcoke), an indigenous lignite and their 70/30 wt.% blend in air and oxy-fuel conditions were investigated by using non-isothermal thermogravimetric method (TGA) coupled with Fourier transform infrared (FTIR) spectrometer. Blend samples were prepared by mixing lignite, which has low calorific value, high ash and moisture contents with petcoke that has high calorific value, low ash and moisture content, in the proportion of 70:30. Pyrolysis tests were carried out in nitrogen and carbon dioxide environments which are the main diluting gases of air and oxy-fuel environments, respectively. Pyrolysis curves of parent fuels and their blend reveal close resemblance up to 700 degrees C in both N(2) and CO(2) environments. At higher temperatures, further weight loss taking place in N(2) and CO(2) atmospheres is attributed to calcite decomposition and CO(2)-char gasification reaction, respectively. Gasification reaction leads to significant increase in CO and COS formation as observed in FTIR evolution profiles. Almost identical experimental and theoretical pyrolysis profiles of the blend samples show that there is no synergy between the parent fuels of the blend in both pyrolysis environments. Combustion experiments were carried out in four different atmospheres; air, oxygen-enriched air environment (30% O(2)-70% N(2)), oxy-fuel environment (21% O(2)-79% CO(2)) and oxygen-enriched oxy-fuel environment (30% O(2)-70% CO(2)). Combustion experiments show that replacing nitrogen in the gas mixture by the same concentration of CO(2) leads to delay in combustion (lower maximum rate of weight loss and higher burnout temperatures). Overall comparison of derivative thermogravimetry (DTG) profiles shows that effect of oxygen content on combustion characteristics is more significant than that of diluting gas in the combustion environment. At elevated oxygen levels, profiles shift through lower temperature zone, peak and burnout temperatures decrease, weight loss rate increases significantly and complete combustion is achieved at lower temperatures and shorter times. Theoretical and experimental combustion profiles of the blend mainly display different trends, which indicate synergistic interactions between lignite and petcoke during their combustion in different environments.


Air and oxy-fuel combustion characteristics of biomass/lignite blends in TGA-FTIR
Yuzbasi, Nur Sena; Selçuk, Nevin (2011-05-01)
Pyrolysis and combustion behavior of indigenous lignite, olive residue and their 50/50 wt.% blend in air and oxy-fuel conditions were investigated by using thermogravimetric analyser (TGA) combined with Fourier-transform infrared (FTIR) spectrometer. Pyrolysis tests were carried out in nitrogen and carbon dioxide environments which are the main diluting gasses of air and oxy-fuel environment, respectively. Pyrolysis results of the parent fuels and the blend show that weight loss profiles are almost the same...
Combustion behavior and kinetics of a Turkish lignite blended with biomass/magnesite dust
Yousefzad Farrokhi, Farshid; Kazanç Özerinç, Feyza; Department of Mechanical Engineering (2017)
This study investigated the effect of blending on the combustion behavior of Turkish lignite blended with biomass or magnesite dust using a thermogravimetric analyzer (TGA) under air atmosphere. The lignite used in this study is Tunçbilek lignite (TL), which is blended with the biomass types; olive residue (OR) and almond shell (AS), and the inorganic industrial waste, magnesite dust (MD). The blends are composed of various weight fractions of fuels, with a constant weight fraction of molasses (10 wt. %) as...
Combustion of Turkish lignites and olive residue: Experiments and kinetic modelling
Magalhaes, Duarte; Kazanç Özerinç, Feyza; Riaza, Juan; Erensoy, Sevgi; Kabakli, Ozde; Chalmers, Hannah (2017-09-01)
This study investigated the combustion behavior and kinetics of Turkish fuels. Two lignite coals from Tuncbilek and Soma region, and olive residue, were used, all within a size range of 106-125 mm. Experiments were performed in a thermogravimetric analyzer (TGA) coupled with a differential thermal analyzer (DTA), under three different heating rates, namely 15, 20, and 40 degrees C/min. Based on the weight loss (TG) and derivative weight loss (DTG) curves, the characteristic temperatures were determined, thr...
Indigenous hydrocarbon degraders further evaluated for their kerosene degradation and biosurfactant production potentials
Aydın, Dilan Camille; İçgen, Bülent; Department of Biochemistry (2018)
Kerosene, known as jet fuel, is one of the most spilled petroleum product causing serious environmental problems due to recalcitrant compounds found in its structure. The only eco-friendly solution for this problem is bioremediation, in which bacteria are used for the degradation and transformation into non or less toxic forms. The efficiency of this process depends not only on biodegradation ability of the bacterial isolates used but also on their biosurfactant production abilities. Therefore, in this stud...
Pyrolysis and Combustion Studies of Fossil Fuels by Thermal Analysis Methods Review
Kök, Mustafa Verşan (1995-02-01)
Instances where differential scanning calorimetry, thermogravimetry and differential thermal analysis have been applied to study the pyrolysis and combustion behaviour of fossil fuels (peat, lignite, bituminous coals, anthracite, oil shales, crude oils, lignite-oil mixtures, etc.) are reviewed. The literature survey showed that thermal methods were important not only theoretically but also from a practical point of view.
Citation Formats
N. S. Yuzbasi and N. Selçuk, “Air and oxy-fuel combustion behaviour of petcoke/lignite blends,” FUEL, pp. 137–144, 2012, Accessed: 00, 2020. [Online]. Available: