Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Compressive strength development of calcium aluminate cement-GGBFS blends
Date
2013-01-01
Author
Kirca, Onder
Yaman, İsmail Özgür
Tokyay, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
281
views
0
downloads
Cite This
The compressive strength development of calcium aluminate cement (CAC) and ground granulated blast furnace slag (GGBFS) blends that were subjected to different curing regimes are investigated. The blends had GGBFS/CAC ratios between 0% and 80%, by mass. Mortar specimens, prepared with a water:binder:sand ratio of 1:2:6, were subjected to seven different curing regimes and the compressive strengths were monitored up to 210 days. In order to understand the effect of temperature on compressive strength development, XRD analyses were also conducted on paste specimens of CAC-GGBFS blends at 28 and 210 days. The experimental analysis results revealed that in CAC-GGBFS combinations, particularly where GGBFS was the main constituent, the formation of stable straetlingite (C(2)ASH(8)) instead of calcium aluminate hydrates hindered the unwanted conversion reactions.
Subject Keywords
Calcium aluminate cement
,
Ground granulated blast furnace slag
,
Conversion
URI
https://hdl.handle.net/11511/30019
Journal
CEMENT & CONCRETE COMPOSITES
DOI
https://doi.org/10.1016/j.cemconcomp.2012.08.016
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Influence of ground perlite on the hydration and strength development of calcium aluminate cement mortars
Şengül, Kemal; Erdoğan, Sinan Turhan (Elsevier BV, 2021-01-10)
© 2020 Elsevier LtdCalcium aluminate cement (CAC) concretes are desirable owing to their rapid strength development and resistance to high temperatures, sulfates and acids. They suffer two drawbacks, however, high cost and strength loss due to conversion of water-rich hydration products to more stable structures, resulting in a drop in strength. Although its rate is dependent on temperature and moisture, the conversion process is thermodynamically inevitable but can be prevented by adding sufficient quantit...
Sulfate resistance of cementitious systems with mineral additives
Dilek, Faruk Tuncer; Tokyay, Mustafa; Department of Civil Engineering (2002)
Sulfate resistance of mortars containing limestone, trass, granulated blast furnace slag and fly ash has been evaluated using ASTM C 1012 test procedure. Prismatic and cubic mortar specimens have been stored in concentrated sodium sulfate and a mixture of sodium sulfate + magnesium sulfate solutions. Relative deterioration of the specimens has been determined by length change, weight change, strength and visual examination. From similar mixtures, cement paste specimens were prepared and structure/morphology...
Electrochemical production of molybdenum refractory metal powders
Akpınar, Bengisu; Karakaya, İshak; Department of Metallurgical and Materials Engineering (2019)
Molybdenum (Mo) is a refractory metal and mostly used as an alloying agent in cast iron, steels and superalloys to enhance hardenability, strength, toughness and corrosion resistance. It also finds other uses either in the form of a pure metal or an element in, for example, lubricants and catalysts. Traditional metal production methods are not suitable for molybdenum because pure molybdenum has a very high melting point and tends to be oxidized at low temperatures. Hydrogen reduction of molybdenum oxide is ...
Polylactide/organically modified montmorillonite composite fibers
Ozdemir, Esra; Hacaloğlu, Jale (2017-03-01)
Direct pyrolysis mass spectrometry technique was applied to investigate the characteristics of polylactide, (PLA) nanofibers containing organically modified montmorillonites, Cloisite 15A, (C15A) Cloisite 20A, (C20A) and Cloisite 30B, (GOB) prepared by electrospinning. As the amount of Cloisite present in the composites was increased, the fiber diameters became slightly narrower compared to neat PLA fiber due to the presence of quaternary ammonium salt as organic modifier increasing electrical conductivity....
Thermal Degradation of Polylactide and Its Electrospun Fiber
Ozdemir, Esra; Hacaloğlu, Jale (2016-01-01)
Thermal degradations of poly(lactic acid), (PLA) and its fiber were studied via direct pyrolysis mass spectrometry. As the amount of PLA pyrolyzed was increased the relative yields of protonated and cyclic oligomers were increased indicating that inter-molecular interactions were promoted. Hydrolysis reactions caused significant decrease in the relative yields of high mass products. Intermolecular trans-esterifications were more effective during the pyrolysis of PLA fiber. On the other hand, PLA fiber showe...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Kirca, İ. Ö. Yaman, and M. Tokyay, “Compressive strength development of calcium aluminate cement-GGBFS blends,”
CEMENT & CONCRETE COMPOSITES
, pp. 163–170, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30019.