Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Electrochemical production of molybdenum refractory metal powders
Download
index.pdf
Date
2019
Author
Akpınar, Bengisu
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
Molybdenum (Mo) is a refractory metal and mostly used as an alloying agent in cast iron, steels and superalloys to enhance hardenability, strength, toughness and corrosion resistance. It also finds other uses either in the form of a pure metal or an element in, for example, lubricants and catalysts. Traditional metal production methods are not suitable for molybdenum because pure molybdenum has a very high melting point and tends to be oxidized at low temperatures. Hydrogen reduction of molybdenum oxide is a very common way for molybdenum production, but it has two stages during the process. In this study, an alternative method to produce molybdenum metal powder by electrochemical processes is studied. The experiments during this study are divided into two groups, which are using calcium molybdate, (CaMoO4) and using molybdenum disulfide (MoS2) as starting materials. CaMoO4 powder used in the form of pressed pellets was reduced in molten CaCl2-NaCl mixture and it was found that most of CaMoO4 dissolved in CaCl2-NaCl mixture. The experiments yielded 1.9% solubility by weight. MoS2 powder pressed to form pellets were also used as starting material for electrochemical formation of pure molybdenum in molten CaCl2-NaCl salt mixture. Complete reduction of MoS2 to molybdenum refractory metal powder was succeeded under argon gas flow at 750oC. A constant voltage of vi 2,8V was applied between graphite anode and cathode holding either CaMoO4 or MoS2 in all experiments.
Subject Keywords
Electrolysis.
,
Electrodeoxidation
,
Molybdenum
,
Calcium molybdate
,
Molybdenum disulfide and Molten Salt Electrolysis.
URI
http://etd.lib.metu.edu.tr/upload/12624854/index.pdf
https://hdl.handle.net/11511/45050
Collections
Graduate School of Natural and Applied Sciences, Thesis