Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effect of thermal treatments and palladium loading an hydrogen sorption characteristics of single-walled carbon nanotubes
Date
2008-03-01
Author
KOCABAŞ, SEFA
KOPAÇ, TÜRKAN
DOĞU, GÜLŞEN
Doğu, Timur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
253
views
0
downloads
Cite This
The effects of thermal treatments and palladium loading on sorption characteristics of single-walled carbon nanotube (SWCNT) samples were investigated. The thermal treatment experiments were carried out in a temperature range of 300-800 degrees C. The sorption characteristics of nitrogen and hydrogen on the original, heat treated and the palladium loaded samples were investigated. Analyzing the nitrogen adsorption isotherms on these samples at 77.4 K, the highest specific surface area of 2230 m(2)/g was obtained at 575 degrees C, while the original samples had a specific surface area of 230 m(2)/g. The highest surface area samples obtained at 575 degrees C were loaded by 3.3, 6.3 and 10.1 wt% palladium and hydrogen adsorption isotherms on these samples were obtained at 77.4 K. The hydrogen sorption capacities of the original and the 10.1 wt% palladium loaded samples were found to be 0.76 and 1.66 wt%, respectively. it was shown that by controlling the temperature of heat treatment, the specific surface area of the samples could be increased and the spillover effect of palladium could enhance the hydrogen sorption. (c) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
Carbon nanotubes
,
Heat treatment
,
Palladium loading
,
Hydrogen sorption
URI
https://hdl.handle.net/11511/30074
Journal
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
DOI
https://doi.org/10.1016/j.ijhydene.2008.01.004
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Effect of carbon nanotube surface treatment on the morphology, electrical, and mechanical properties of the microfiber-reinforced polyethylene/poly(ethylene terephthalate)/carbon nanotube composites
Yesil, Sertan; Bayram, Göknur (2013-01-15)
The aim of this study is to investigate the effects of carbon nanotube (CNT) chemical properties, CNT content, and molding temperature on the morphology, electrical, and mechanical properties of the microfiber-reinforced polymer composites. These composites were prepared by extrusion and hot stretching the poly(ethylene terephthalate) (PET)/CNT phase in high density polyethylene (HDPE) matrix. Surfaces of the CNT were modified by purification with strong acid mixture (HNO3 : H2SO4 mixture 1 : 1 by volume) f...
Effects of oxidative functionalized and aminosilanized carbon nanotubes on the crystallization behaviour of polyamide-6 nanocomposites
Kaynak, Cevdet (2014-04-01)
The purpose of this study is to investigate effects of oxidative functionalized and aminosilanized carbon nanotubes on the (1) isothermal and (2) non-isothermal crystallization kinetics of polyamide-6 by DSC analyses, and (3) crystal structure of injection molded specimens by XRD analyses. Nanocomposites were compounded by using melt mixing technique via twin screw extrusion. Due to basically very effective heterogeneous nucleation effect, both increasing amount and surface functionalization of carbon nanot...
Effects of silica nanoparticles on the performance of water-based drilling fluids
Kök, Mustafa Verşan; Bal, Berk (2019-09-01)
In this research, two groups of experiments were conducted to investigate the effects of silica (SiO2) nanoparticles on the filtration and rheological properties of water-based drilling fluids. In the first group, bentonite, chrome-free lignosulfonate (CFL) and carboxymethyl cellulose (CMC) were used in different concentrations to obtain base fluids. Nanofluids were prepared by adding 0.5 g of four different silica nanoparticles into these drilling fluids. Comparison of rheological properties, fluid loss am...
Effect of molecular and electronic structure on the light-harvesting properties of dye sensitizers
Mete, E.; Üner, Deniz; Cakmak, M.; Gulseren, O.; Ellialtoglu, S. (American Chemical Society (ACS), 2007-05-24)
The systematic trends in structural and electronic properties of perylenediimide (PDI)-derived dye molecules have been investigated by DFT calculations based on the projector-augmented wave (PAW) method including gradient-corrected exchange-correlation effects. Time-dependent density functional theory (TDDFT) calculations have been performed to study the visible absorbance activity of these complexes. The effect of different ligands and halogen atoms attached to PDI were studied to characterize the light-ha...
Effects of reactor geometry on dissociating CO2 and electrode degradation in a MHCD plasma reactor
Taylan, Onur; Pinero, Daniel; Berberoğlu, Halil (2018-08-01)
This paper reports an experimental study on the effects of reactor geometry for dissociating carbon dioxide using a microhollow cathode discharge (MHCD) reactor, and the associated electrode degradation. A MHCD reactor consists of two hollow metal electrodes that are separated by dielectric material. The geometric reactor parameters studied were the dielectric material thickness and the diameter of the reactor hole. Dielectric thicknesses of 150, 300 and 450 mu m and discharge hole diameters of 200, 400 and...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. KOCABAŞ, T. KOPAÇ, G. DOĞU, and T. Doğu, “Effect of thermal treatments and palladium loading an hydrogen sorption characteristics of single-walled carbon nanotubes,”
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
, pp. 1693–1699, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30074.