Effect of molecular and electronic structure on the light-harvesting properties of dye sensitizers

Download
2007-05-24
Mete, E.
Üner, Deniz
Cakmak, M.
Gulseren, O.
Ellialtoglu, S.
The systematic trends in structural and electronic properties of perylenediimide (PDI)-derived dye molecules have been investigated by DFT calculations based on the projector-augmented wave (PAW) method including gradient-corrected exchange-correlation effects. Time-dependent density functional theory (TDDFT) calculations have been performed to study the visible absorbance activity of these complexes. The effect of different ligands and halogen atoms attached to PDI were studied to characterize the light-harvesting properties. The atomic size and electronegativity of the halogen were observed to alter the relaxed molecular geometries, which in turn influenced the electronic behavior of the dye molecules. The ground-state molecular structure of isolated dye molecules studied in this work depends on both the halogen atom and the carboxylic acid groups. DFT calculations revealed that the carboxylic acid ligands did not play an important role in changing the HOMO-LUMO gap of the sensitizer. However, they serve as an anchor between the PDI and substrate TiO2 surface of the solar cell or photocatalyst. A commercially available dye sensitizer, ruthenium bipyridine [Ru(bpy)(3)](2+) (RuBpy), was also studied for electronic and structural properties in order to make a comparison with PDI derivatives for light-harvesting properties. Results of this work suggest that fluorinated, chlorinated, brominated, and iodinated PDI compounds can be useful as sensitizers in solar cells and in artificial photosynthesis.
JOURNAL OF PHYSICAL CHEMISTRY C

Suggestions

Interaction of BrPDI, BrGly, and BrAsp with the Rutile TiO2(110) Surface for Photovoltaic and Photocatalytic Applications: A First-Principles Study
Cakir, D.; GÜLSEREN, Oğuz; METE, ERSEN; Ellialtıoğlu, Süleyman Şinasi (American Chemical Society (ACS), 2011-05-12)
The adsorption of perylenediimide (PDI)-based dye compounds (BrPDI, BrGly, and BrAsp) on the defect-free unreconstructed (UR) rutile TiO2(110) surface has been studied using total energy pseudopotential calculations based on density functional theory. All dye molecules form moderate chemical bonds with the defect-free UR rutile (110) surface in the most stable adsorption configurations. Electronic structure analysis reveals that HOMO and LUMO levels of the adsorbed dye molecules appear within the band gap a...
Effect of Gas Permeation Temperature and Annealing Procedure on the Performance of Binary and Ternary Mixed Matrix Membranes of Polyethersulfone, SAPO-34, and 2-Hydroxy 5-Methyl Aniline
Oral, Edibe Eda; Yılmaz, Levent; Kalıpçılar, Halil (Wiley, 2014-09-05)
This study investigated the effect of annealing time and temperature on gas separation performance of mixed matrix membranes (MMMs) prepared from polyethersulfone (PES), SAPO-34, and 2-hydroxy 5-methyl aniline (HMA). A postannealing period at 120 degrees C for a week extensively increased the reproducibility and stability of MMMs, but for pure PES membranes no postannealing was necessary for stable and reproducible performance. The effect of operation temperature was also investigated. The permeabilities of...
Study on the Effect of Chemically Different Substrates on Nucleation and Growth Mechanism of Perfluoropentacene Thin Films
Yavuz, Adem; Danışman, Mehmet Fatih (American Chemical Society (ACS), 2019-08-15)
We studied the effect of chemical properties of substrates on the structural properties of perfluoropentacene (PFP) thin films grown by the supersonic molecular beam deposition technique. To this end, we have used m-carborane-1-thiol, template-stripped gold, and mica substrate surfaces and investigated the PFP film properties as a function of film thickness and molecular flux (deposition rate). On all three substrates, the PFP molecules adsorb in standing-up orientation in the first layer and overlayers. Ho...
A Comparative Density Functional Study of Hydrogen Peroxide Adsorption and Activation on the Graphene Surface Doped with N, B, S, Pd, Pt, Au, Ag, and Cu Atoms
Duzenli, Derya (American Chemical Society (ACS), 2016-09-15)
The adsorption of the hydrogen peroxide (H2O2) molecule, which is known as the common form of reactive oxygen species in living cells, was investigated theoretically over pure graphene and heteroatom- (nitrogen-, boron-, and sulfur-) and metal-atom- (silver-, gold-, copper-, palladium-, and platinum-) doped graphene surfaces using the density functional theory (DFT) method. This study involved the optimization of pure and doped graphene surfaces, adsorption of the gas molecule on top of the doped atoms and ...
Relative Photon-to-Carrier Efficiencies of Alternating Nanolayers of Zinc Phthalocyanine and C-60 Films Assessed by Time-Resolved Terahertz Spectroscopy
Esentürk, Okan; Lane, Paul A.; Heilweil, Edwin J. (American Chemical Society (ACS), 2009-10-29)
Multilayer and 1:1 blended films of zinc phthalocyanine (ZnPc) and buckminsterfullerene (C-60) were investigated as model active layers for solar cells by time-resolved terahertz spectroscopy (TRTS). Relative photon-to-carrier efficiencies were determined from ultrafast decay dynamics of photogenerated carriers using 400 and 800 nm excitation for delay times up to 0.5 ns. The findings are in good agreement with reported solar-cell device measurements, and the results exhibit a near linear increase of the re...
Citation Formats
E. Mete, D. Üner, M. Cakmak, O. Gulseren, and S. Ellialtoglu, “Effect of molecular and electronic structure on the light-harvesting properties of dye sensitizers,” JOURNAL OF PHYSICAL CHEMISTRY C, pp. 7539–7547, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42428.