Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On determining cluster size of randomly deployed heterogeneous WSNs
Download
index.pdf
Date
2008-04-01
Author
Sevgi, Cueneyt
Koçyiğit, Altan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
147
views
0
downloads
Cite This
Clustering is an efficient method to solve scalability problems and energy consumption challenges. For this reason it is widely exploited in Wireless Sensor Network (WSN) applications. It is very critical to determine the number of required clusterheads and thus the overall cost of WSNs while satisfying the desired level of coverage. Our objective is to study cluster size, i.e., how much a clusterhead together with sensors can cover a region when all the devices in a WSN are deployed randomly. Therefore, it is possible to compute the required number of nodes of each type for given network parameters.
Subject Keywords
Cluster size
,
Random deployment
,
Wireless sensor networks (WSNs)
URI
https://hdl.handle.net/11511/30093
Journal
IEEE COMMUNICATIONS LETTERS
DOI
https://doi.org/10.1109/lcomm.2008.071942
Collections
Graduate School of Informatics, Article
Suggestions
OpenMETU
Core
Optimization of time-cost-resource trade-off problems in project scheduling using meta-heuristic algorithms
Bettemir, Önder Halis; Sönmez, Rifat; Department of Civil Engineering (2009)
In this thesis, meta-heuristic algorithms are developed to obtain optimum or near optimum solutions for the time-cost-resource trade-off and resource leveling problems in project scheduling. Time cost trade-off, resource leveling, single-mode resource constrained project scheduling, multi-mode resource constrained project scheduling and resource constrained time cost trade-off problems are analyzed. Genetic algorithm simulated annealing, quantum simulated annealing, memetic algorithm, variable neighborhood ...
Development of high performance heuristic and meta-heuristic methods for resource optimization of large scale construction projects
Abbasi Iranagh, Mahdi; Sönmez, Rifat; Department of Civil Engineering (2015)
Despite the importance of resource optimization in construction scheduling, very little success has been achieved in solving the resource leveling problem (RLP) and resource constrained discrete time-cost trade-off problem (RCDTCTP), especially for large-scale projects. The major objective of this thesis is to design and develop new heuristic and meta-heuristic methods to achieve fast and high quality solutions for the large-scale RLP and RCDTCTP. Two different methods are presented in this thesis for the R...
Implicit monolithic parallel solution algorithm for seismic analysis of dam-reservoir systems
Özmen, Semih; Kurç, Özgür; Department of Civil Engineering (2016)
This research mainly focuses on developing a computationally scalable and efficient solution algorithm that can handle linear dynamic analysis of dam-reservoir interaction problem. Lagrangian fluid finite elements are utilized and compressibility and viscosity of the fluid are taken into consideration during the reservoir modeling. In order to provide computational scalability and efficiency, domain decomposition methods implemented with parallel computing approaches such as Finite Element Tearing and Inter...
Design and optimization of a rate adaptation algorithm for energy harvesting transmitters /
Kement, Cihan Emre; Uysal Bıyıkoğlu, Elif; Department of Electrical and Electronics Engineering (2014)
The need for energy efficient communication frameworks is growing. Energy harvesting communication constitutes an important part among such systems. This thesis aims to design and optimize a rate adaptation algorithm for transmitters of such systems in order to achieve energy efficiency. An optimal offline rate scheduling problem with battery constraints is solved by using iterative and heuristic techniques. Furthermore, it is shown that an additional energy saving is possible by changing the optimization p...
Rigorous Solutions of Large-Scale Scattering Problems Discretized with Hundreds of Millions of Unknowns
Guerel, L.; Ergül, Özgür Salih (2009-09-18)
We present fast and accurate solutions of large-scale scattering problems using a parallel implementation of the multilevel fast multipole algorithm (MLFMA). By employing a hierarchical partitioning strategy, MLFMA can be parallelized efficiently on distributed-memory architectures. This way, it becomes possible to solve very large problems discretized with hundreds of millions of unknowns. Effectiveness of the developed simulation environment is demonstrated on various scattering problems involving canonic...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Sevgi and A. Koçyiğit, “On determining cluster size of randomly deployed heterogeneous WSNs,”
IEEE COMMUNICATIONS LETTERS
, pp. 232–234, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30093.