Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Control and Robustness Analysis for a High-alpha Maneuverable Thrust-Vectoring Fighter Aircraft
Date
2009-09-01
Author
Atesoglu, Oezguer
Özgören, Mustafa Kemal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
191
views
0
downloads
Cite This
This study focuses on designing a nonlinear controller for high-alpha maneuvers of a fighter aircraft with a thrust-vectoring control ability and checking the robustness of the designed controller using the structured singular-value mu-based robustness analysis. The controller is designed using the nonlinear dynamic inversion method. It is designed, to engage either the aerodynamic control surfaces or the thrust-vectoring control paddles of the engines, depending on the flight conditions. The necessary mathematical models are built to describe the nonlinear flight dynamics, the nonlinear aerodynamics, the engine with thrust-vectoring paddles, and the aircraft sensors. The robustness analysis is especially needed when thrust-vectoring control is engaged in a challenging high-alpha maneuver. This is necessary to analyze the effect of increasing uncertainty in the aerodynamic parameters in such a flight condition. In a flight with thrust-vectoring control, the effect of the aerodynamic uncertainties on the robustness is investigated for two different cases. In the first case, the aerodynamic forces and moments are treated as if they are completely unknown. This unusual uncertainty assumption is proposed and investigated for the first time in this paper. In the second case, the aerodynamic forces and moments are assumed to be known but only with a limited degree of confidence (e.g., 70%). The results of the robustness analysis for each case show that it is impossible to achieve a satisfactory robustness if the aerodynamic forces and moments are treated as completely unknown disturbances, whereas robustness can be achieved rather easily if they are known even with only 70% confidence. These conclusions are also verified with numerical flight simulations.
Subject Keywords
Flight control
,
Inversion
,
Feedback
URI
https://hdl.handle.net/11511/30154
Journal
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS
DOI
https://doi.org/10.2514/1.42989
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Control Allocation Strategies for a Hybrid Controlled Missile with NDI Autopilot
Biyikli, Rabiya; Tekin, Raziye; Yavrucuk, İlkay (2022-01-01)
This study presents roll angle, lateral, and longitudinal acceleration autopilots for a highly agile air defense missile with both aerodynamic tail control and thrust vector control (TVC) parts. Nonlinear Dynamic Inversion (NDI) is studied to handle bank-to-turn and agile maneuvers due to the cross-coupling effects. Output redefinition is implemented using the center of percussion idea for the nonminimum phase of the tail-controlled missiles. Another arduous feature of the system is that the dual control of...
Control and guidance of a multi-mode unmanned aerial vehicle for increased versatility
Çakıcı, Ferit; Leblebicioğlu, Mehmet Kemal; Yavrucuk, İlkay; Department of Electrical and Electronics Engineering (2016)
This work is an approach about producing a solution to control and guidance problem of an Unmanned Aerial Vehicle (UAV) platform, named as VTOL-FW, having vertical takeoff/landing (VTOL), fixed-wing (FW) and hybrid modes for increasing versatility of conventional types by enabling extended mission capabilities. FW UAVs provide long range with high endurance, but minimum flight speed limitation does not allow hover and VTOL. Although VTOL UAVs can hover and takeoff/land vertically, high power requirement lim...
A Model based approach for aircraft sensor fault detection
Serçekman, Ömür; Kutay, Ali Türker; Department of Aerospace Engineering (2018)
This thesis presents a reformative approach to a model-based fault detection and diagnosis (FDD) method that improves the capability of aircraft flight control systems and acquires low complexity and computational requirements. The main objective of the FDD techniques that are extensively applied in industrial systems is to increase the sensitivity of fault detection scheme with respect to additional noise, uncertainty or disturbances. The designed fault detection model is integrated to a civil aircraft mod...
Control allocation for a multi-rotor e-vtol aircraft using blended-inverse
Aksoy, Emre; Yavrucuk, İlkay; Department of Aerospace Engineering (2021-2-25)
In this thesis, the control allocation problem in a flight control system design for a multi-rotor eVTOL (electric Vertical Takeoff and Landing) aircraft is proposed. The vehicle consists of 20 identical rotors that are used as flight control actuators. The dynamic system is a MIMO (Multi Input Multi Output) system with more inputs than outputs, i.e. there are many solutions of the control problem. The objective is to find an efficient and redundant control solution that provides sufficient flight performan...
Robust Model Following Control Design for Missile Roll Autopilot
Gezer, R. Berk; Kutay, Ali Türker (2014-07-11)
This paper presents a robust model following control method augmented with error integration and Luenberger observer for anti-air missile roll autopilot designed using optimal control laws. The design is shown to be robust to external disturbance, noisy measurements and sensor lags by frequency domain analysis. The regulation performance of the controller is presented by simulations.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Atesoglu and M. K. Özgören, “Control and Robustness Analysis for a High-alpha Maneuverable Thrust-Vectoring Fighter Aircraft,”
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS
, pp. 1483–1496, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30154.