Control and guidance of a multi-mode unmanned aerial vehicle for increased versatility

Çakıcı, Ferit
This work is an approach about producing a solution to control and guidance problem of an Unmanned Aerial Vehicle (UAV) platform, named as VTOL-FW, having vertical takeoff/landing (VTOL), fixed-wing (FW) and hybrid modes for increasing versatility of conventional types by enabling extended mission capabilities. FW UAVs provide long range with high endurance, but minimum flight speed limitation does not allow hover and VTOL. Although VTOL UAVs can hover and takeoff/land vertically, high power requirement limits flight time and distance. Thus, the physical limitations of these conventional platforms necessitate a search for new platform types. Although the subject of FW and VTOL UAVs is a mature field of research, a hybrid platform possessing general characteristics of both types present new challenges from control and guidance aspects. These challenges include determination of how to switch between modes, obtaining high endurance through efficient flight and allowing maximum control authority in order to provide robustness. Thus, VTOL-FW UAV is physically designed by incorporating both airplane and multirotor control surfaces, mathematically modeled based on aerodynamical principles and analyzed in terms of stability, power requirements and flight characteristics. The analysis showed that the aircraft demonstrates both VTOL and FW characteristics with extra benefits through utilization of multi-modes in an enlarged flight envelope. A hybrid control and guidance algorithm is designed which allows mode-switching and management of multi-modes. Finally, flight tests in the real world and simulations proved the feasibility of the asserted algorithms and the VTOL-FW platform, which enables increased versatility through utilization of multi-modes.
Citation Formats
F. Çakıcı, “Control and guidance of a multi-mode unmanned aerial vehicle for increased versatility,” Ph.D. - Doctoral Program, Middle East Technical University, 2016.