Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Poly(methyl methacrylate) organoclay composites; interactions of organic modifier with the polymer effecting thermal degradation behavior
Date
2017-10-01
Author
Ozdemir, Esra
Hacaloğlu, Jale
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
265
views
0
downloads
Cite This
In this work, poly(methyl methacrylate), PMMA, and its composites involving montmorillonites modified with different quaternary ammonium salts were prepared and characterized by X-ray Diffraction, XRD, Transmission Electron Microscopy, TEM, Thermogravimetry, TGA and direct pyrolysis mass spectrometry, DPMS. Increase in the interlayer spacing of the silicate layers compared to the corresponding organically modified clay was detected in X-ray diffractograms for all the PMMA composites in accordance with TEM results indicating mainly intercalated structure. The thermal stability of all PMMA composites increased compared to the neat PMMA. Thermal stability of the composites increased with the increase in the interlayer spacing of the silicate layers. This behavior was directly associated with better intercalation of PMMA chains within the galleries with larger interlayer spacing of silicate layers. Direct pyrolysis mass spectrometry results pointed out reactions between amine and hydroxyl groups of organic modifiers with the ester groups of PMMA generating methanol and thermally more stable chains.
Subject Keywords
Poly(methyl methacrylate)
,
Nanocomposites
,
Organoclays
,
Morphology
,
Direct pyrolysis mass spectrometry
URI
https://hdl.handle.net/11511/30172
Journal
EUROPEAN POLYMER JOURNAL
DOI
https://doi.org/10.1016/j.eurpolymj.2017.08.041
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Poly(methyl methacrylate) nanocomposites involving aromatic diboronic acid
Goktas, Muberra; Hacaloğlu, Jale (2019-12-01)
In this work, poly(methyl methacrylate), PMMA, composites involving various amounts of aromatic diboronic acid, BDBA, in the absence and presence of organically modified montmorillonite, Cloisite 30B, C30B, were prepared and characterized by X-ray diffraction, transmission electron microscopy, thermogravimetry, and direct pyrolysis mass spectrometry analyses. Morphologic analyses indicated homogenous dispersion of additives in PMMA matrix. Increase in thermal stability of PMMA was observed as the amount of ...
Polylactide/organically modified montmorillonite composite fibers
Ozdemir, Esra; Hacaloğlu, Jale (2017-03-01)
Direct pyrolysis mass spectrometry technique was applied to investigate the characteristics of polylactide, (PLA) nanofibers containing organically modified montmorillonites, Cloisite 15A, (C15A) Cloisite 20A, (C20A) and Cloisite 30B, (GOB) prepared by electrospinning. As the amount of Cloisite present in the composites was increased, the fiber diameters became slightly narrower compared to neat PLA fiber due to the presence of quaternary ammonium salt as organic modifier increasing electrical conductivity....
Thermal degradation of Polylactide/Poly(ethylene glycol) fibers and composite fibers involving organoclay
Ozdemir, Esra; Hacaloğlu, Jale (2018-01-01)
In this study, electrospun fibers of melt blended poly(lactic acid) and poly(ethylene glycol), (PLA)-PEG blends involving 10, 15 and 20 wt% PEG and their corresponding composites with organically modified montmorillonite, Cloisite 30B were prepared and characterized by x-ray diffraction, differential scanning calorimetry, thermogravimetry and direct pyrolysis mass spectrometry techniques. The narrower fiber diameters observed for the PLA-PEG fibers involving organoclay compared to the corresponding neat fib...
Polylactide/organically modified montmorillonite composites; effects of organic modifier on thermal characteristics
Ozdemir, Esra; Öztürk, Yurdagül; Hacaloğlu, Jale (2016-12-01)
The effects of interspace distance and the possible chemical interactions between PLA and the organic modifier of montmorillonites, Cloisite 15A, 20A and 30B on thermal degradation of PLA in the absence and presence of water vapor were investigated by direct pyrolysis mass spectrometry, (DP-MS) in addition to XRD, TEM, DSC, TGA analyses. The DP-MS results clearly showed that the way in which the polymer was incorporated into the nanocomposite strongly depends on the mixing technique, the interspacing betwee...
Thermal degradation of poly(isobornyl acrylate) and its copolymer with poly(methyl methacrylate) via pyrolysis mass spectrometry
Ozlem, Suriye; Aslan-Guerel, Evren; Rossi, Rene M.; Hacaloğlu, Jale (2013-03-01)
In this work, the thermal degradation characteristics of poly(isobornyl acrylate) (PIBA), and its copolymer with PMMA, P(MMA-co-IBA) were investigated via direct pyrolysis mass spectrometry. Thermal degradation behavior of poly(isobornyl methacrylate) (PIBMA) was also studied for a better understanding of thermal degradation mechanism of PIBA. For both PIBA and PIBMA, gamma-H transfer from the isobornyl ring to the carbonyl group was predominantly effective in thermal degradation. As a consequence of evolut...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Ozdemir and J. Hacaloğlu, “Poly(methyl methacrylate) organoclay composites; interactions of organic modifier with the polymer effecting thermal degradation behavior,”
EUROPEAN POLYMER JOURNAL
, pp. 474–481, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30172.