Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Performance of Acidic MCM-Like Aluminosilicate Catalysts in Pyrolysis of Polypropylene
Date
2009-01-01
Author
Obali, Zeynep
Sezgi, Naime Aslı
Doğu, Timur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
185
views
0
downloads
Cite This
Mesoporous aluminosilicate catalysts having different Al/Si ratios were synthesized following a hydrothermal synthesis route and using different aluminum sources, such as aluminum nitrate and aluminum isopropoxide. These mesoporous materials have high surface areas, in the range of 520-1001 m(2)/g, and exhibit Type IV nitrogen adsorption isotherms. EDS and Al-27 MAS NMR results showed that aluminum was incorporated more effectively into the structure of the catalyst forming a tetrahedral framework when aluminum nitrate was used as the aluminum source. The activities of these catalysts in the polypropylene pyrolysis reaction were tested in a TGA apparatus. Results showed a marked reduction in the degradation temperature in the presence of aluminosilicate catalysts. The activation energy of degradation was 172 kJ/mole without any catalyst. However, using the mesoporous aluminosilicate catalysts synthesized by using aluminum nitrate as the aluminum source, activation energy of the degradation reaction decreased to values of about 24-28 kJ/mole.
Subject Keywords
Aluminosilicate
,
Catalytic degradation
,
Mesoporous catalyst
,
Polypropylene
URI
https://hdl.handle.net/11511/30305
Journal
CHEMICAL ENGINEERING COMMUNICATIONS
DOI
https://doi.org/10.1080/00986440802301537
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
The synthesis and characterization of aluminum loaded SBA-type materials as catalyst for polypropylene degradation reaction
Obali, Zeynep; Sezgi, Naime Aslı; Doğu, Timur (2011-12-01)
The performance of pure and aluminum containing SBA-type catalysts prepared using different aluminum sources and different Al/Si ratios were investigated in the polypropylene degradation reaction using a thermogravimetric analyzer. For the synthesis of catalysts, aluminum isopropoxide and aluminum sulphate were used as the aluminum sources. Synthesized materials had high surface areas and exhibited nitrogen adsorption isotherms of type IV. EDS results showed that the aluminum incorporation into the structur...
Pyrolysis of Polyethylene over Aluminum-Incorporated MCM-41 Catalyst
Aydemir, Bugce; Sezgi, Naime Aslı (2016-01-01)
Aluminum-containing MCM-41 catalysts were synthesized in this study by impregnation of aluminum into hydrothermally synthesized MCM-41. Aluminum was loaded into the porous framework of silica with different Al/Si ratios, using aluminum isopropoxide as the aluminum source. These catalysts exhibited Type IV adsorption-desorption isotherms and had a pore diameter of 2.4nm. Aluminum species were coordinated tetra- and octahedrally in the structure of catalysts. Diffuse Reflectance Fourier Transform Infrared Spe...
Performance of silicotungstic acid incorporated mesoporous catalyst in direct synthesis of dimethyl ether from syngas in the presence and absence of CO2
Çelik, Gökhan; Bayat, Aysegul; Ozbelge, H. Onder; Doğu, Timur (2013-12-01)
Dimethyl ether (DME), which is an excellent green diesel fuel alternate, is synthesized following a direct synthesis route from synthesis gas, by using a bi-functional catalyst mixture, which was composed of a silicotungstic acid incorporated mesoporous catalyst [TRC-75(L)] and a commercial Cu-Zn based catalyst. Higher DME selectivity values were obtained by using TRC-75(L), than commercial gamma-alumina at 50 bars. Presence of CO2 in the feed stream caused significant enhancement in DME selectivity. Result...
Properties of YBCO superconductors prepared by ammonium nitrate melt and solid-state reaction methods
Sozeri, Huseyin; Ozkan, Husnu; Ghazanfari, Nader (Elsevier BV, 2007-01-31)
Ceramic YBCO superconductors were prepared by: (1) ammonium nitrate melt, (2) solid-state reaction methods and the properties of the samples obtained were compared. Under the same annealing conditions single phase YBCO was synthesized at a lower temperature by the former method. Moreover, at 900 degrees C Y-123 phase and the initially adjusted Y-211 additive could be formed using ammonium nitrate melt, but not with the solid-state method which leads Y-123 at a higher temperature (950 degrees C) without Y-21...
Kinetic investigation of chemical vapor deposition of B4C on tungsten substrate
Karaman, Mustafa; Sezgi, Naime Aslı; Doğu, Timur; Ozbelge, H. Onder (2006-12-01)
Production of beta-rhombohedral boron carbide (B4C) on a tungsten substrate by the chemical vapor deposition from a BCl3-H-2-CH4 gas mixture was achieved. An impinging-jet reactor was used to minimize the mass-transfer limitations on the reaction kinetics, which made a detailed kinetic investigation possible. Results of the XRD and XPS analyses showed that the solid product formed on the substrate is a rhombohedral B4C phase. Both dichloroborane and boron carbide formation rates were found to increase with ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. Obali, N. A. Sezgi, and T. Doğu, “Performance of Acidic MCM-Like Aluminosilicate Catalysts in Pyrolysis of Polypropylene,”
CHEMICAL ENGINEERING COMMUNICATIONS
, pp. 116–130, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30305.