Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Method of Lyapunov functions for differential equations with piecewise constant delay
Date
2011-06-15
Author
Akhmet, Marat
ARUĞASLAN ÇİNÇİN, Duygu
Yılmaz, Elanur
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
245
views
0
downloads
Cite This
We address differential equations with piecewise constant argument of generalized type [5-8] and investigate their stability with the second Lyapunov method. Despite the fact that these equations include delay, stability conditions are merely given in terms of Lyapunov functions; that is, no functionals are used. Several examples, one of which considers the logistic equation, are discussed to illustrate the development of the theory. Some of the results were announced at the 14th International Congress on Computational and Applied Mathematics (ICCAM2009), Antalya, Turkey, in 2009.
Subject Keywords
Nonlinear differential equations
,
Piecewise constant argument of generalized type
,
Method of Lyapunov functions
,
Logistic equation
URI
https://hdl.handle.net/11511/30340
Journal
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
DOI
https://doi.org/10.1016/j.cam.2010.02.043
Collections
Graduate School of Social Sciences, Article
Suggestions
OpenMETU
Core
LYAPUNOV-RAZUMIKHIN METHOD FOR DIFFERENTIAL EQUATIONS WITH PIECEWISE CONSTANT ARGUMENT
Akhmet, Marat (2009-10-01)
At the first time, Razumikhin technique is applied for differential equations with piecewise constant argument of generalized type [1, 2]. Sufficient conditions are established for stability, uniform stability and uniform asymptotic stability of the trivial solution of such equations. We also provide appropriate examples to illustrate our results.
Stability analysis of recurrent neural networks with piecewise constant argument of generalized type
Akhmet, Marat; Yılmaz, Elanur (2010-09-01)
In this paper, we apply the method of Lyapunov functions for differential equations with piecewise constant argument of generalized type to a model of recurrent neural networks (RNNs). The model involves both advanced and delayed arguments. Sufficient conditions are obtained for global exponential stability of the equilibrium point. Examples with numerical simulations are presented to illustrate the results.
Unpredictable solutions of quasilinear differential equations with generalized piecewise constant arguments of mixed type
Tleubergenova, Madina; Çinçin, Duygu Aruğaslan; Nugayeva, Zakhira; Akhmet, Marat (2023-01-01)
An unpredictable solution is found for a quasilinear differential equation with generalized piece-wise constant argument (EPCAG). Sufficient conditions are provided for the existence, uniqueness and exponential stability of the unpredictable solution. The theoretical results are confirmed by examples and illustrated by simulations.
Inverse problems for a semilinear heat equation with memory
Kaya, Müjdat; Çelebi, Okay; Department of Mathematics (2005)
In this thesis, we study the existence and uniqueness of the solutions of the inverse problems to identify the memory kernel k and the source term h, derived from First, we obtain the structural stability for k, when p=1 and the coefficient p, when g( )= . To identify the memory kernel, we find an operator equation after employing the half Fourier transformation. For the source term identification, we make use of the direct application of the final overdetermination conditions.
Exponential stability of periodic solutions of recurrent neural networks with functional dependence on piecewise constant argument
Akhmet, Marat; Cengiz, Nur (null; 2015-08-25)
Akhmet [1] generalized differential equations with piecewise constant argument by taking any piecewise constant functions as arguments, and recently he introduced functional dependence on piecewise constant argument [2]. These equations play an important role in applications such as neural networks [3]. In this study, we develope a model of recurrent neural network with functional dependence on piecewise constant argument of generalized type given by x 0 (t) = −Ax (t) + Ex (γ (t)) + Bh (xt) + Cg xγ(t) + D...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Akhmet, D. ARUĞASLAN ÇİNÇİN, and E. Yılmaz, “Method of Lyapunov functions for differential equations with piecewise constant delay,”
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
, pp. 4554–4560, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30340.