Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Thermal degradation of organophosphorus flame-retardant poly(methyl methacrylate) nanocomposites containing nanoclay and carbon nanotubes
Date
2012-03-01
Author
ORHAN, Tugba
Isitman, Nihat Ali
Hacaloğlu, Jale
Kaynak, Cevdet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
225
views
0
downloads
Cite This
Filler nanoparticles pave the way for the development of novel halogen-free flame-retardant polymers. The aim of this study was to investigate the thermal degradability, and in particular, the thermal degradation mechanism of organophosphorus flame-retardant poly(methyl methacrylate) (PMMA) nanocomposites containing nanoclay (NC) and multi-walled carbon nanotubes (CNT). For this purpose, thermogravimetry and direct pyrolysis mass spectrometry analysis were utilized. The onset of degradation was delayed through increased maximum degradation temperature and suppressed mass loss corresponding to initial degradation stage with carbon nanotubes and nanoclays, respectively. Possibility of reactions of melamine and/or melamine derivatives and interactions between carbonyl groups of PMMA and phosphinic acid leading to thermally more stable products was increased owing to the barrier effect of filler nanoparticles. In the presence of NC better flame retarding characteristics was detected as anhydride formation, leading to charring being more effective.
Subject Keywords
Thermal degradation
,
Direct pyrolysis mass spectrometry
,
Organophosphorus compound
,
Carbon nanotube
,
Organoclay
,
Nanocomposite
URI
https://hdl.handle.net/11511/30357
Journal
POLYMER DEGRADATION AND STABILITY
DOI
https://doi.org/10.1016/j.polymdegradstab.2011.12.020
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Direct insertion probe mass spectrometry of polymers
Hacaloğlu, Jale (2012-04-16)
This chapter reviews advances in the technique of direct insertion probe mass spectrometry (DIP-MS) and its applications in polymer analysis for various purposes. The applications for thermal characterization involve investigation of the thermal stability, degradation products, and decomposition mechanism of complex polymer samples, in particular polymers involving flame retardants, polyphenylene- and poly(phenylene vinylene)-based materials, and coalesced homopolymers and polymer blends. Examples focused o...
Thermal degradation of polylactide/aluminium diethylphosphinate
Kaya, Hatice; Hacaloğlu, Jale (2014-11-01)
Direct pyrolysis mass spectrometry analyses of polylactide, PLA, reveal two dominating decomposition pathways; chain homolysis and trans-esterification reactions under the experimental conditions yielding mainly low mass fragments and cyclic oligomers. The main pyrolysis products of aluminium diethylphosphinate, AlPi, are determined to be the dimeric four coordinate compounds possessing Al-O-P linkages. Thermal stability of polylactide in the presence of AlPi is decreased due to the attack of phosphinates g...
Thermal degradation of polycarbonate, poly(vinyl acetate) and their blends
Uyar, Tamer; Tonelli, Alan E.; Hacaloğlu, Jale (2006-12-01)
We have recently developed a novel approach for intimately mixing thermodynamically incompatible polymers, which utilizes the formation of inclusion compounds (ICs) formed with host cyclodextrins (CDs), followed by removal of CD and coalescence of the common guest polymers into a blend. In this paper direct insertion probe pyrolysis mass spectrometry (DIP-MS) analyses of polycarbonate (PC), poly(vinyl acetate) (PVAc) and PC/PVAc blends, obtained by coalescence from their inclusion compounds formed with host...
Thermal degradation of Polylactide/Poly(ethylene glycol) fibers and composite fibers involving organoclay
Ozdemir, Esra; Hacaloğlu, Jale (2018-01-01)
In this study, electrospun fibers of melt blended poly(lactic acid) and poly(ethylene glycol), (PLA)-PEG blends involving 10, 15 and 20 wt% PEG and their corresponding composites with organically modified montmorillonite, Cloisite 30B were prepared and characterized by x-ray diffraction, differential scanning calorimetry, thermogravimetry and direct pyrolysis mass spectrometry techniques. The narrower fiber diameters observed for the PLA-PEG fibers involving organoclay compared to the corresponding neat fib...
Thermal degradation of poly(p-phenylene-graft-ε-caprolactone) copolymer
Nur, Yusuf; Yurteri, Seda; Cianga, Ioan; Yagci, Yusuf; Hacaloğlu, Jale (2007-01-01)
The thermal degradation of poly (p-phenylene-graft-epsilon-caprolactone) (PPP), synthesized by Suzuki polycondensation of poly(E-caprolactone) (PCL) with a central 2,5-dibromo-1,4-benzene on the chain with 1,4-phenylene-diboronic acid, has been studied via direct pyrolysis mass spectrometry. The thermal degradation occurred mainly in two steps. In the first step, decomposition of PCL chains occurred. A slight increase in thermal stability of PCL chains was noted. In the second stage of pyrolysis, the decomp...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. ORHAN, N. A. Isitman, J. Hacaloğlu, and C. Kaynak, “Thermal degradation of organophosphorus flame-retardant poly(methyl methacrylate) nanocomposites containing nanoclay and carbon nanotubes,”
POLYMER DEGRADATION AND STABILITY
, pp. 273–280, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30357.