An algorithm for line matching in an image by mapping into an n-dimensional vector space

2019-01-01
Sultanov, Raiymbek
Atakan, Ahmet
Ismailova, Rita
This paper proposes a minimal length difference algorithm for construction of a line in an image by solving the problem of optimal contour approximation. In this algorithm, a method for finding interest points is proposed, and the object matching (classification) is done by mapping interest points onto a vector space. In cases where the lines in the representation of the images are not smooth, the algorithm converges rapidly. The results of the experiments showed that for convergence of the contour simplification, there were 5-6 iterations for n = 13. To check how close the curve approximation calculated by the algorithm above, the researchers have calculated the length of the curve simplification manually. This length was then compared to the length of the original curve. The results showed that the length of the simplified curve grew rapidly to 92%-95% of the original curve length. The further increase in the number of points does not affect this indicator. According to the obtained results, the relative difference and the relative difference distance are good metrics to match objects.
TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES

Suggestions

A FAST IMAGE-RECONSTRUCTION ALGORITHM FOR ELECTRICAL-IMPEDANCE TOMOGRAPHY
Kuzuoğlu, Mustafa; Leblebicioğlu, Mehmet Kemal (IOP Publishing, 1994-05-01)
In this paper, we propose a fast algorithm for the reconstruction of the conductivity perturbation DELTAsigma about a known conductivity variation sigma0. The method is based on the minimization of a quadratic functional subject to linear constraints, where the existence of a unique solution is guaranteed. The algorithm developed for this purpose is iterative and each iteration is composed of a simple matrix multiplication. The validity of this method is illustrated with several examples.
A METHOD FOR COMPARATIVE-EVALUATION OF EIT ALGORITHMS USING A STANDARD DATA SET
IDER, YZ; EYUBOGLU, BM; KUZUOGLU, M; Leblebicioğlu, Mehmet Kemal; BAYSAL, U; CAGLAR, BK; BIRGUL, O (IOP Publishing, 1995-08-01)
The point spread function (PSF) is the most widely used tool for quantifying the spatial resolution of imaging systems. However, prerequisites for the proper use of this tool are linearity and space invariance. Because EIT is non-linear it is only possible to compare different reconstruction algorithms using a standard data set. In this study, the FEM is used to generate simulation data, which are used to investigate the non-linear behaviour of EIT, the space dependence of its PSF and its capability of reso...
A Partition Based Method for Spectrum-Preserving Mesh Simplification
Yazgan, Misranur; Sahillioğlu, Yusuf; Department of Computer Engineering (2022-8-29)
When the complexity of a mesh starts introducing high computational costs, mesh simplification methods come into the picture, to reduce the number of elements utilized to represent the mesh. Majority of the simplification methods focus on preserving the appearance of the mesh, ignoring the spectral properties of the differential operators derived from the mesh. The spectrum of the Laplace-Beltrami operator is essential for a large subset of applications in geometry processing. Coarsening a mesh without cons...
An improved method of photometric stereo using local shape from shading
Sakarya, U; Erkmen, İsmet (Elsevier BV, 2003-10-01)
This paper presents an improved photometric stereo (PS) method by integrating it with a local shape from shading (SFS) algorithm. PS produces the initial estimate of image for the global accuracy and also provides the recovery of albedo, SFS supplies the more detailed information within each homogeneous area. The quality of depth obtained by integrating PS and SFS is compared with the real depth using absolute dept error function, and the improvement ranging from 2.3 to 14% over PS is obtained.
A 2-0 navier-stokes solution method with overset moving grids
Tuncer, İsmail Hakkı (1996-01-01)
A simple, robust numerical algorithm to localize moving boundary points and to interpolate uniteady solution variables across 2-D, arbitrarily overset computational grids is presented. Overset grids are allowed to move in time relative to each other. The intergrid boundary points are localized in terms of three grid points on the donor grid by a directional search algorithm. The parameters of the search algorithm give the interpolation weights at the localized boundary point. The method is independent of nu...
Citation Formats
R. Sultanov, A. Atakan, and R. Ismailova, “An algorithm for line matching in an image by mapping into an n-dimensional vector space,” TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, pp. 3532–3543, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30391.