A 2-0 navier-stokes solution method with overset moving grids

1996-01-01
A simple, robust numerical algorithm to localize moving boundary points and to interpolate uniteady solution variables across 2-D, arbitrarily overset computational grids is presented. Overset grids are allowed to move in time relative to each other. The intergrid boundary points are localized in terms of three grid points on the donor grid by a directional search algorithm. The parameters of the search algorithm give the interpolation weights at the localized boundary point. The method is independent of numerical solution algorithms and may easily be implemented on any 2-D, single block flow solver to make it a multi-block, zonal solver with arbitrarily overset computational grids. Computational results and comparisons with single grid solutions are presented for flows through a compressor cascade and over an airfoil undergoing a flapping motion. Excellent agreement is obtained against the single grid solutions.

Suggestions

A 2-D unsteady Navier-Stokes solution method with overlapping/overset moving grids
Tuncer, İsmail Hakkı (1996-01-01)
A simple, robust numerical algorithm to localize intergrid boundary points and to interpolate unsteady solution variables across 2-D, overset/overlapping, structured computational grids is presented. Overset/ overlapping grids are allowed to move in time relative to each other. The intergrid boundary points are localized in terms of three grid points on the donor grid by a directional search algorithm. The final parameters of the search algorithm give the interpolation weights at the interpolation point. Th...
Two-dimensional unsteady Navier-Stokes solution method with moving overset grids
Tuncer, İsmail Hakkı (American Institute of Aeronautics and Astronautics (AIAA), 1997-03-01)
A simple numerical algorithm to localize intergrid boundary points and to interpolate unsteady solution variables across two-dimensional, structured overset grids is presented. Overset grids are allowed to move in time relative to each other. Intergrid boundary points are localized in a triangular stencil on the donor grid by a directional search algorithm. The final parameters of the search algorithm give the interpolation weights at the intergrid boundary point. Numerical results are presented for steady ...
Efficient Surface Integral Equation Methods for the Analysis of Complex Metamaterial Structures
Yla-Oijala, Pasi; Ergül, Özgür Salih; Gurel, Levent; Taskinen, Matti (2009-03-27)
Two approaches, the multilevel fast multipole algorithm with sparse approximate inverse preconditioner and the surface equivalence principle algorithm, are applied to analyze complex three-dimensional metamaterial structures. The efficiency and performance of these methods are studied and discussed.
2-D Navier-Stokes solution method with overset moving grids
Tuncer, İsmail Hakkı (1996-01-01)
A simple, robust numerical algorithm to localize moving boundary points and to interpolate unsteady solution variables across 2-D, arbitrarily overset computational grids is presented. Overset grids are allowed to move in time relative to each other. The intergrid boundary points are localized in terms of three grid points on the donor grid by a directional search algorithm. The parameters of the search algorithm give the interpolation weights at the localized boundary point. The method is independent of nu...
A linear approximation for training Recurrent Random Neural Networks
Halıcı, Uğur (1998-01-01)
In this paper, a linear approximation for Gelenbe's Learning Algorithm developed for training Recurrent Random Neural Networks (RRNN) is proposed. Gelenbe's learning algorithm uses gradient descent of a quadratic error function in which the main computational effort is for obtaining the inverse of an n-by-n matrix. In this paper, the inverse of this matrix is approximated with a linear term and the efficiency of the approximated algorithm is examined when RRNN is trained as autoassociative memory.
Citation Formats
İ. H. Tuncer, “A 2-0 navier-stokes solution method with overset moving grids,” 1996, vol. 1, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/58002.