# Improved three-way split formulas for binary polynomial multiplication

2011-08-12
Cenk, Murat
Hasan, M. Anwar
In this paper we deal with 3-way split formulas for binary field multiplication with five recursive multiplications of smaller sizes. We first recall the formula proposed by Bernstein at CRYPTO 2009 and derive the complexity of a parallel multiplier based on this formula. We then propose a new set of 3-way split formulas with five recursive multiplications based on field extension. We evaluate their complexities and provide a comparison.

# Suggestions

 Improved Three-Way Split Formulas for Binary Polynomial and Toeplitz Matrix Vector Products Cenk, Murat; Hasan, M. Anwar (2013-07-01) In this paper, we consider three-way split formulas for binary polynomial multiplication and Toeplitz matrix vector product (TMVP). We first recall the best known three-way split formulas for polynomial multiplication: the formulas with six recursive multiplications given by Sunar in a 2006 IEEE Transactions on Computers paper and the formula with five recursive multiplications proposed by Bernstein at CRYPTO 2009. Second, we propose a new set of three-way split formulas for polynomial multiplication that a...
 Some new results on binary polynomial multiplication Cenk, Murat (2015-11-01) This paper presents several methods for reducing the number of bit operations for multiplication of polynomials over the binary field. First, a modified Bernstein's 3-way algorithm is introduced, followed by a new 5-way algorithm. Next, a new 3-way algorithm that improves asymptotic arithmetic complexity compared to Bernstein's 3-way algorithm is introduced. This new algorithm uses three multiplications of one-third size polynomials over the binary field and one multiplication of one-third size polynomials ...
 A New Algorithm for Residue Multiplication Modulo 2(521)-1 Ali, Shoukat; Cenk, Murat (2016-12-02) We present a new algorithm for residue multiplication modulo the Mersenne prime p = 2(521) - 1 based on the Toeplitz matrix-vector product. For this modulus, our algorithm yields better result in terms of the total number of operations than the previously known best algorithm of Granger and Scott presented in Public Key Cryptography (PKC) 2015. We have implemented three versions of our algorithm to provide an extensive comparison - according to the best of our knowledge with respect to the well-known algori...
 New Efficient Algorithms for Multiplication Over Fields of Characteristic Three Cenk, Murat; Hasan, M. Anwar (2018-03-01) In this paper, we first present an enhancement of the well-known Karatsuba 2-way and 3-way algorithms for characteristic three fields, denoted by where nae1. We then derive a 3-way polynomial multiplication algorithm with five 1/3 sized multiplications that use interpolation in . Following the computation of the arithmetic and delay complexity of the proposed algorithm, we provide the results of our hardware implementation of polynomial multiplications over and . The final proposal is a new 3-way polynomial...
 HYBRID ANALYSIS OF TMVP FOR MODULAR POLYNOMIAL MULTIPLICATION IN CRYPTOGRAPHY Efe, Giray; Cenk, Murat; Department of Cryptography (2022-3-07) Polynomial multiplication on the quotient ring Z[x]/ is one of the most fundamental, general-purpose operations frequently used in cryptographic algorithms. Therefore, a possible improvement over a multiplication algorithm directly affects the performance of algorithms used in a cryptographic application. Well-known multiplication algorithms such as Schoolbook, Karatsuba, and Toom-Cook are dominant choices against NTT in small and ordinary input sizes. On the other hand, how these approaches are imp...
Citation Formats
M. Cenk and M. A. Hasan, “Improved three-way split formulas for binary polynomial multiplication,” 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30418.