Sliding mode control with optimal sliding surfaces for missile autopilot design

2000-07-01
Salamci, MU
Özgören, Mustafa Kemal
Banks, SP
A new method is introduced to design sliding mode control with optimally selected sliding surfaces for a class of nonlinear systems. The nonlinear systems are recursively approximated as linear time-varying systems, and corresponding time-varying sliding surfaces are designed for each approximated system so that a given optimization criterion is minimized. The control input, which is designed by using an approximated system, is then applied to the nonlinear system. The method is used to design an autopilot for a missile where the design requirement is to follow a given acceleration command. The sliding surface is selected such that a performance index formed as a function of angle of attack, pitch rate, and velocity error is minimized. It is shown that the response of the approximating sequence of linear time-varying systems converges to the response of the missile.
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS

Suggestions

Sliding mode control for non-linear systems with adaptive sliding surfaces
Durmaz, Burak; Özgören, Mustafa Kemal; SALAMCİ, METİN UYMAZ (2012-02-01)
This study covers the sliding mode control design with adaptive sliding surfaces for a class of affine non-linear systems, which can be described by (x) over dot = A(x)x + B(x)u + f(x) + d(x, t). The main streamline of the study is the sliding surface design for such systems. The sliding surfaces are designed to be moving with varying slopes and offsets. The varying sliding surface parameters are determined by solving the state-dependent Riccati equations online during the control process. Thus, the sliding...
Sliding mode control design with time varying sliding surfaces for a class of nonlinear systems
SALAMCİ, METİN UYMAZ; Tombul, G. Serdar (2006-10-06)
This paper presents sliding mode control (SMC) design for a class of nonlinear systems in which the sliding surface is designed to be linear with time varying slope(s). The sliding surface design is based on the frozen-time approach. The nonlinear system is frozen at each operation step resulting in linear time invariant (LTI) model and the sliding surface is designed for the LTI model. The surface slope is updated at each frozen step which gives, in general, a moving sliding surface. The control term, on t...
ADAPTIVE-CONTROL OF FLEXIBLE MULTILINK MANIPULATORS
BODUR, M; SEZER, ME (Informa UK Limited, 1993-09-01)
An adaptive self-tuning control scheme is developed for end-point position control of flexible manipulators. The proposed scheme has three characteristics. First, it is based on a dynamic model of a flexible manipulator described in cartesian coordinates, which eliminates the burden and inaccuracy of translating a desired end-point trajectory to joint coordinates using inverse kinematic relations. Second, the effect of flexibility is included in the dynamic model by approximating flexible links with a numbe...
Maximum Power Point Tracking Based on Sliding Mode Control
Boulaam, K.; Boukhelifa, A. (2011-09-10)
In this paper, a non-linear control algorithm based on a sliding mode theory is proposed to maximize the power extraction of a variable speed wind turbine. This algorithm works in the partial load region. It has been used to control the wind turbine speed so that it reaches the desired value which corresponds to the maximum power point. In order to prove its efficiency, it has been compared with a classic linear control using a PI controller. Simulation tests are established using Matlab-Simulink The propos...
Sliding mode control of linearly actuated nonlinear systems
Durmaz, Burak; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2009)
This study covers the sliding mode control design for a class of nonlinear systems, where the control input affects the state of the system linearly as described by (d/dt)x=A(x)x+B(x)u+d(x). The main streamline of the study is the sliding surface design for the system. Since there is no systematic way of designing sliding surfaces for nonlinear systems, a moving sliding surface is designed such that its parameters are determined in an adaptive manner to cope with the nonlinearities of the system. This adapt...
Citation Formats
M. Salamci, M. K. Özgören, and S. Banks, “Sliding mode control with optimal sliding surfaces for missile autopilot design,” JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, pp. 719–727, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30482.