ADAPTIVE-CONTROL OF FLEXIBLE MULTILINK MANIPULATORS

Download
1993-09-01
BODUR, M
SEZER, ME
An adaptive self-tuning control scheme is developed for end-point position control of flexible manipulators. The proposed scheme has three characteristics. First, it is based on a dynamic model of a flexible manipulator described in cartesian coordinates, which eliminates the burden and inaccuracy of translating a desired end-point trajectory to joint coordinates using inverse kinematic relations. Second, the effect of flexibility is included in the dynamic model by approximating flexible links with a number of rigid sublinks connected at fictitious joints. The relatively high stiffness of the fictitious joints is shown to result in a decomposition of the model into two subsystems operating at different rates. This allows for stabilization of the oscillatory modes associated with the flexible links by a fast feedback control in addition to a slower control for trajectory tracking. Third, the control is constructed from measurements of the end-point position and deformations of the flexible links, with the manipulator parameters required to form the control obtained using a recursive least-squares estimation algorithm, which is fast enough for on-line applications. Satisfactory results are obtained from digital simulation of a two-link flexible manipulator.
INTERNATIONAL JOURNAL OF CONTROL

Suggestions

Backstepping designs for the stabilisation of nonlinear sampled-data systems via approximate discrete-time model
Ustunturk, Ahmet; Kocaoglan, Erol (Informa UK Limited, 2013-05-01)
The problems of backstepping, adaptive backstepping and reduced order observer based output feedback control of sampled-data nonlinear systems in strict feedback form are considered. Controller design methods based on the Euler approximate model are presented for these problems. The controllers are designed to compensate the effects of the discrepancy between the Euler approximate model and exact discrete time model, parameter estimation error in adaptive control and observer error in output feedback contro...
Dynamic modeling and parameter estimation for traction, rolling, and lateral wheel forces to enhance mobile robot trajectory tracking
BAYAR, Gokhan; Koku, Ahmet Buğra; Konukseven, Erhan İlhan (Cambridge University Press (CUP), 2015-12-01)
Studying wheel and ground interaction during motion has the potential to increase the performance of localization, navigation, and trajectory tracking control of a mobile robot. In this paper, a differential mobile robot is modeled in a way that (traction, rolling, and lateral) wheel forces are included in the overall system dynamics. Lateral wheel forces are included in the mathematical model together with traction and rolling forces. A least square parameter estimation process is proposed to estimate the ...
Experimental Validation of a Feed-Forward Predictor for the Spring-Loaded Inverted Pendulum Template
Uyanik, Ismail; Morgul, Omer; Saranlı, Uluç (Institute of Electrical and Electronics Engineers (IEEE), 2015-02-01)
Widely accepted utility of simple spring-mass models for running behaviors as descriptive tools, as well as literal control targets, motivates accurate analytical approximations to their dynamics. Despite the availability of a number of such analytical predictors in the literature, their validation has mostly been done in simulation, and it is yet unclear how well they perform when applied to physical platforms. In this paper, we extend on one of the most recent approximations in the literature to ensure it...
Control of Planar Spring-Mass Running Through Virtual Tuning of Radial Leg Damping
Secer, Gorkem; Saranlı, Uluç (Institute of Electrical and Electronics Engineers (IEEE), 2018-10-01)
Existing research on dynamically capable legged robots, particularly those based on spring-mass models, generally considers improving in isolation either the stability and control accuracy on the rough terrain, or the energetic efficiency in steady state. In this paper, we propose a new method to address both, based on the hierarchical embedding of a simple spring-loaded inverted pendulum (SLIP) template model with a tunable radial damping coefficient into a realistic leg structure with series-elastic actua...
Nonblocking Hierarchical Control of Decentralized Discrete Event Systems
Schmidt, Klaus Verner; PERK, SEBASTIAN (Institute of Electrical and Electronics Engineers (IEEE), 2008-11-01)
This contribution investigates the hierarchical control of decentralized discrete event systems (DES) that are synchronized by shared events. A hierarchical control architecture providing hierarchical consistency is introduced. Moreover, it allows for composition of decentralized subsystems on the high-level of the hierarchy and hence reduces the computational complexity of supervisory control synthesis for language inclusion specifications. In this context, a crucial issue is the nonblocking operation of t...
Citation Formats
M. BODUR and M. SEZER, “ADAPTIVE-CONTROL OF FLEXIBLE MULTILINK MANIPULATORS,” INTERNATIONAL JOURNAL OF CONTROL, pp. 519–536, 1993, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/65167.