Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A DFT study on CO oxidation on Pd-4 and Rh-4 clusters and adsorbed Pd and Rh atoms on CeO2 and Ce(0.75)Z(r0.25)O(2) supports for TWC applications
Date
2013-11-15
Author
Gerceker, Duygu
Önal, Işık
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
169
views
0
downloads
Cite This
CO oxidation reaction mechanisms and energetics are examined on adsorbed Pd-4 and Rh-4 clusters and adsorbed Pd and Rh atoms on CeO2 and Ce0.75Zr0.25 O-2 support structures using DFT methods. Activation barriers and TS structures are computed with CI-NEB method. On cluster adsorbed systems, Zr affects CO binding position and O-2 adsorption mode. Energetically, formation of two CO2 molecules without barrier and surface regeneration is possible only on Pd-4-CeO2 surface. With metal atom substituted surfaces, Pd substituted Ce0.75Zr0.25O2 and CeO2 supports are found to be capable of completing catalytic cycle with consecutive CO oxidations by creating and filling surface oxygen vacancies.
Subject Keywords
CO oxidation
,
Density functional theory
,
Three way catalysts
,
Ceria Noble metals
URI
https://hdl.handle.net/11511/30490
Journal
APPLIED SURFACE SCIENCE
DOI
https://doi.org/10.1016/j.apsusc.2013.09.016
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
A Density Functional Theory Study of NO Reduction by C3H8 Aided Selective Catalytic Reduction Method
Tezsevin, Ilker; Onay, Deniz; FELLAH, MEHMET FERDİ; Önal, Işık (2015-03-01)
In this theoretical work sequential adsorption of H-2 and O-2 on a Ag (7) (+) cluster surface is first studied and Ag (7) (+) H2O2 cluster co-complex thereby obtained is used for the NO reduction process. This cationic charged silver nano cluster simulates small Ag crystals experimentally detected on gamma-Al2O3 support. For NO reduction, three different mechanisms and intermediate steps of these mechanisms reported in experimental literature are examined. Energy profiles, activation barriers and transition...
A DFT Study of Direct Oxidation of Benzene to Phenol by N2O over [Fe(mu-O)Fe](2+) Complexes in ZSM-5 Zeolite
Fellah, Mehmet Ferdi; Pidko, Evgeny A.; van Santen, Rutger A.; Önal, Işık (2011-05-19)
Density functional theory (DFT) calculations were carried out in a study of the mechanism of benzene oxidation by N2O to phenol over an extra framework dimeric [FeOFe](2+) species in ZSM-5 zeolite represented by a [Si6Al2O9H14(Fe(mu-O)Fe)] cluster model. The catalytic reactivity of such a binuclear species is compared with that of mononuclear Fe2+ and (FeO)(+) sites in ZSM-5 investigated in our earlier works at the same level of theory (J. Phys. Chem. C 2009, 113, 15307; 2010, 114, 12580). The activation en...
A quantum chemical study of nitric oxide reduction by ammonia (SCR reaction) on V2O5 catalyst surface
Soyer, Sezen; Uzun, Alper; Senkan, Selim; Önal, Işık (2006-12-15)
The reaction mechanism for the selective catalytic reduction (SCR) of nitric oxide by ammonia on (010) V2O5 surface represented by a V2O9H8 cluster was simulated by means of density functional theory (DFT) calculations performed at B3LYP/6-31G** level. The computations indicated that SCR reaction consisted of three main parts. For the first part, ammonia activation on V2O5 was investigated. Ammonia was adsorbed on Bronsted acidic V-OH site as NH4+ species by a non-activated process with an exothermic relati...
A density functional theory study of partial oxidation of propylene on Cu2O(001) and CuO(001) surfaces
Duzenli, Derya; Atmaca, Deniz Onay; Gezer, Miray Gulbiter; Önal, Işık (2015-11-15)
This work theoretically investigates propylene epoxidation reaction on Cu2O(001) and CuO(001) surfaces using periodical DFT method to determine the active copper species within the reaction mechanism. The transition states and energy profiles are calculated for the formation of surface intermediates such as oxametallopropylene (OMP) over Cu2O(0 0 1) and oxygen bridging (OB) over CuO(0 0 1) and allylic H-stripping reaction (AHS) over both surfaces as well as for formation of products. Propylene oxide (PO) an...
A van der Waals DFT study of chain length dependence of alkanethiol adsorption on Au(111): physisorption vs. chemisorption
Mete, Ersen; Yortanli, Merve; Danışman, Mehmet Fatih (2017-06-07)
The energetics and structures of physisorbed and chemisorbed alkanethiols on Au(111) have been systematically investigated up to 10 carbon atoms using van der Waals (vdW) corrected density functional theory (DFT) calculations. The role of chain length, tilting angle and coverage on the adsorption characteristics has been examined to elucidate the energetics and plausible transformation mechanisms between lying down and standing up phases. Coverage and size dependent chain-chain electronic interactions count...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Gerceker and I. Önal, “A DFT study on CO oxidation on Pd-4 and Rh-4 clusters and adsorbed Pd and Rh atoms on CeO2 and Ce(0.75)Z(r0.25)O(2) supports for TWC applications,”
APPLIED SURFACE SCIENCE
, pp. 927–936, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30490.