Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A quantum chemical study of nitric oxide reduction by ammonia (SCR reaction) on V2O5 catalyst surface
Date
2006-12-15
Author
Soyer, Sezen
Uzun, Alper
Senkan, Selim
Önal, Işık
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
293
views
0
downloads
Cite This
The reaction mechanism for the selective catalytic reduction (SCR) of nitric oxide by ammonia on (010) V2O5 surface represented by a V2O9H8 cluster was simulated by means of density functional theory (DFT) calculations performed at B3LYP/6-31G** level. The computations indicated that SCR reaction consisted of three main parts. For the first part, ammonia activation on V2O5 was investigated. Ammonia was adsorbed on Bronsted acidic V-OH site as NH4+ species by a non-activated process with an exothermic relative energy difference of 28.65 kcal/mol. Lewis acidic ammonia interactions were also considered and they were found to be energetically unfavorable. Therefore, it is concluded that the SCR reaction on (010) vanadium oxide surface is initiated favorably by the Bronsted acidic ammonia adsorption. The second part of the SCR reaction consists of the interaction of nitric oxide with the pre-adsorbed ammonia species to eventually form nitrosamide (NH2NO) species. The rate limiting step for this part as well as for the total SCR reaction can be identified as NH3NHO formation with a high activation barrier of 43.99 kcal/mol; however, it must be cautioned that only an approximate transition state was obtained for this step. For the last part, gas phase decomposition of NH2NO and decomposition of this species on catalyst surface were both considered. Gas phase decomposition of NH2NO was found to have high activation barriers when compared with the NH2NO decomposition on V2O9H8 cluster surface. NH2NO decomposition on this cluster was achieved by means of a push-pull hydrogen transfer mechanism between the active V=0 and V-OH groups.
Subject Keywords
Selective catalytic reduction
,
SCR
,
NO reduction
,
NH3
,
Quantum chemical calculations
,
Density functional theory
,
DFT
,
V2O5
URI
https://hdl.handle.net/11511/32206
Journal
CATALYSIS TODAY
DOI
https://doi.org/10.1016/j.cattod.2006.07.033
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
A DFT Study of Direct Oxidation of Benzene to Phenol by N2O over [Fe(mu-O)Fe](2+) Complexes in ZSM-5 Zeolite
Fellah, Mehmet Ferdi; Pidko, Evgeny A.; van Santen, Rutger A.; Önal, Işık (2011-05-19)
Density functional theory (DFT) calculations were carried out in a study of the mechanism of benzene oxidation by N2O to phenol over an extra framework dimeric [FeOFe](2+) species in ZSM-5 zeolite represented by a [Si6Al2O9H14(Fe(mu-O)Fe)] cluster model. The catalytic reactivity of such a binuclear species is compared with that of mononuclear Fe2+ and (FeO)(+) sites in ZSM-5 investigated in our earlier works at the same level of theory (J. Phys. Chem. C 2009, 113, 15307; 2010, 114, 12580). The activation en...
A density functional theory study of partial oxidation of propylene on Cu2O(001) and CuO(001) surfaces
Duzenli, Derya; Atmaca, Deniz Onay; Gezer, Miray Gulbiter; Önal, Işık (2015-11-15)
This work theoretically investigates propylene epoxidation reaction on Cu2O(001) and CuO(001) surfaces using periodical DFT method to determine the active copper species within the reaction mechanism. The transition states and energy profiles are calculated for the formation of surface intermediates such as oxametallopropylene (OMP) over Cu2O(0 0 1) and oxygen bridging (OB) over CuO(0 0 1) and allylic H-stripping reaction (AHS) over both surfaces as well as for formation of products. Propylene oxide (PO) an...
A Density Functional Theory Study of Direct Oxidation of Benzene to Phenol by N2O on a [FeO](1+)-ZSM-5 Cluster
Fellah, Mehmet Ferdi; Önal, Işık; van Santen, Rutger A. (2010-07-29)
Density functional theory calculations were carried out in a study of the oxidation of benzene to phenol by N2O on a model (FeO)(1+)-ZSM-5 cluster: the [(SiH3)(4)AlO4(FeO)] cluster. This cluster models the reactivity of Fe3+ oxidic clusters. Results are to be compared with an earlier study (J. Phys. Chem. C 2009, 113, 15307) on a model Fe2+-ZSM-5 cluster. The true activation energies for the elementary reaction step in which phenol is produced appear to be comparable. The major difference between the two sy...
Quantum chemical simulation of nitric oxide reduction by ammonia (scr reaction) on v2o5 / tio2 catalyst surface
Soyer, Sezen; Önal, Işıl; Department of Chemical Engineering (2005)
The reaction mechanism for the selective catalytic reduction (SCR) of nitric oxide by ammonia on (010) V2O5 surface represented by a V2O9H8 cluster was simulated by density functional theory (DFT) calculations. The computations indicated that SCR reaction consisted of three main parts. In the first part ammonia activation on Brønsted acidic V-OH site as NH4+ species by a nonactivated process takes place. The second part includes the interaction of NO with pre-adsorbed NH4 + species to eventually form nitros...
A density functional theory study of oxidation of benzene to phenol by N2O on Fe- and Co-ZSM-5 clusters
Fellah, Mehmet Ferdi; Önal, Işık (2009-06-01)
Density functional theory (DFT) calculations were carried out in the study of oxidation of benzene to phenol by N2O on relaxed [(SiH3)(4)AlO4M] (where M=Fe, Co) cluster models representing Fe- and Co-ZSM-5 surfaces. The catalytic cycle steps are completed for both Fe-ZSM-5 and Co-ZSM-5 clusters. The general trend of the results that were obtained in terms of activation barriers for the Fe-ZSM-5 cluster is in agreement with the experimental and theoretical literature. It was observed that the phenol formatio...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Soyer, A. Uzun, S. Senkan, and I. Önal, “A quantum chemical study of nitric oxide reduction by ammonia (SCR reaction) on V2O5 catalyst surface,”
CATALYSIS TODAY
, pp. 268–278, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32206.