Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
TGA and kinetic study of different torrefaction conditions of wood biomass under air and oxy-fuel combustion atmospheres
Date
2020-06-01
Author
Barzegar, Ramin
Yozgatlıgil, Ahmet
OLGUN, HAYATİ
Atımtay, Aysel
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
215
views
0
downloads
Cite This
Combustion and oxy-fuel combustion characteristics of torrefied pine wood chips were investigated by Thermogravimetric Analysis (TGA). Three torrefaction temperatures (250, 300, and 350 degrees C) and two residence times (15 and 30 min) were considered. Experiments were carried out at three heating rates of 10, 20, and 40 degrees C/min. The isoconversional kinetic methods of FWO, KAS, and Friedman were employed to estimate the activation energies. The assessment of uncertainty in obtaining the activation energy values was also considered. The obtained results indicated that due to torrefaction, the O/C and H/C atomic ratios decreased, resulting the 300 degrees C-30 min and 350 degrees C-15 min torrefied biomass to be completely embedded in lignite region in van-Krevelen's diagram. Oxy-fuel combustion affected the decomposition of cellulose and lignin components of biomass while the impact on the hemicellulose component was negligible. The kinetic analysis revealed that with the evolution of conversion degree, the activation energy values increased during hemicellulose degradation, remained approximately constant during cellulose decomposition and showed a sharp decrease for lignin decomposition. The activation energy trends were comparable in both air and oxy-fuel combustion conditions, however slight changes in activation energy values were noticed. The highest activation energy value was obtained for 250 degrees C-30 min torrefied biomass at 183.40 kJ/mol and the lowest value was 72.93 kJ/mol for 350 degrees C-15 min biomass. The uncertainty values related to FWO method were lower than KAS and Friedman methods. The uncertainty values for FWO and KAS methods were at the range of 5-15%. (C) 2019 Energy Institute. Published by Elsevier Ltd. All rights reserved.
Subject Keywords
Torrefied biomass
,
Oxy-fuel combustion
,
Kinetics
,
TGA
URI
https://hdl.handle.net/11511/30549
Journal
JOURNAL OF THE ENERGY INSTITUTE
DOI
https://doi.org/10.1016/j.joei.2019.08.001
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Combustion characteristics of Turkish lignites at oxygen-enriched and oxy-fuel combustion conditions
Barzegar, Ramin; Yozgatlıgil, Ahmet; Atımtay, Aysel (2019-10-01)
Combustion and oxy-fuel combustion characteristics of two Turkish lignites (Orhaneli and Soma) were investigated by Thermogravimetric Analysis (TGA) method. Experiments were carried out under oxygen-enriched air and oxy-fuel combustion conditions with 21, 30, 40% oxygen concentrations. Three heating rates of 5, 10, and 20 degrees C/min were considered and the isoconversional kinetic methods of FWO, KAS, and Friedman were employed to estimate activation energies. The uncertainty assessment in obtaining the a...
Thermal analysis and kinetics of biomass samples
Kök, Mustafa Verşan (2013-02-01)
In this research, combustion behavior of agricultural residues known as miscanthus, poplar wood, and rice husk was investigated using thermal analysis techniques. Differential scanning calorimeter (DSC) and thermogravimetry (TG-DTG) techniques were used. Combustion experiments were performed at five different heating rates (5, 10, 15, 25, and 50 degrees C/min). The reaction regions, ignition and burnout temperatures, heat flow rate values of biomass samples are determined. Activation energy of the biomass s...
Thermal characterization, combustion and kinetics of different origin crude oils
Gundogar, Asli S.; Kök, Mustafa Verşan (2014-05-01)
In this research, the combustion behavior of six Turkish crude oils (light and medium type) was investigated by thermogravimetry/derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC) methods under atmospheric air in the absence of rock matrix. Two main reaction intervals were observed on all thermograms known as low temperature oxidation (LTO) and high temperature oxidation (HTO) regions. The resulting curves showed that the mass loss under combustion is accompanied by exothermic ...
Pyrolysis characteristics of Turkish lignites in N-2 and CO2 environments
BARZEGAR, RAMİN; Avşaroğlu, Sevil; Yozgatlıgil, Ahmet; Atımtay, Aysel (2018-01-01)
Pyrolysis characteristics and kinetic parameters of two Turkish lignites having different ash contents (Orhaneli as low ash and Soma as high ash sample) were studied under N-2 and CO2 atmospheres by means of thermogravimetric analysis. The isoconversional kinetic methods of FlynnWallOzawa, KissingerAkahiraSunose, and Friedman were employed to estimate the activation energy and pre-exponential factors. The experiments were conducted at four different heating rates of 5, 10, 15, and 20 degrees C/min within th...
Application of TGA-MS technique for oil shale characterization and kinetics
Kök, Mustafa Verşan; Varfolomeev, Mikhail A.; Nurgaliev, Danis K.; Kandasamy, Jayaraman (2022-03-01)
Thermal characteristics and model free kinetics of four different oil shale samples were studied using simultaneous thermogravimetry-mass spectrometer (TGA-MS) analysis performed at three different heating rates and under air atmosphere. All the reaction regions and corresponding peak temperatures, mass loss, and the residue of oil shale samples were determined. Meanwhile, the main volatile products, primary alcohols, and aromatic compounds as products of oil shale combustion, were determined on the basis o...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. Barzegar, A. Yozgatlıgil, H. OLGUN, and A. Atımtay, “TGA and kinetic study of different torrefaction conditions of wood biomass under air and oxy-fuel combustion atmospheres,”
JOURNAL OF THE ENERGY INSTITUTE
, pp. 889–898, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30549.