Pyrolysis characteristics of Turkish lignites in N-2 and CO2 environments

Avşaroğlu, Sevil
Yozgatlıgil, Ahmet
Atımtay, Aysel
Pyrolysis characteristics and kinetic parameters of two Turkish lignites having different ash contents (Orhaneli as low ash and Soma as high ash sample) were studied under N-2 and CO2 atmospheres by means of thermogravimetric analysis. The isoconversional kinetic methods of FlynnWallOzawa, KissingerAkahiraSunose, and Friedman were employed to estimate the activation energy and pre-exponential factors. The experiments were conducted at four different heating rates of 5, 10, 15, and 20 degrees C/min within the temperature range of 50950oC. The obtained results indicated that changing the pyrolysis ambient had no significant effect on the devolatilization region up to 700 degrees C. The char formation region in N-2 atmosphere was due to the CaCO3 decomposition and was more significant for Soma lignite due to its high ash content. However, in CO2 atmosphere, the gasification reaction took place at temperatures higher than 700 degrees C. The decomposition process of CaCO3 in CO2 atmosphere was hampered up to temperatures higher than 900 degrees C. The estimated activation energies were found to have approximately similar trends under different atmospheres. For Orhaneli lignite, the average activation energy values were higher in CO2 environment. However, for Soma lignite due to decomposition of CaCO3,the activation energy values were higher in N-2 atmosphere. The mean uncertainty values were assessed for the activation energy values obtained for all test cases.


HACISALIHOGLU, G; BALKAS, TI; Tuncel, Süleyman Gürdal; HERMAN, DH; OLMEZ, I; TUNCEL, G (1991-01-01)
Shipboard aerosol samples collected from the Black Sea atmosphere were analysed for Al, Ca, Mg, Ti, V, Cl, I, Mn and Na, by using instrumental neutron activation technique. Concentrations of elements were intermediate between continental rural sites and remote marine sites. Back-trajectory calculations showed a general easterly flow. Observed enrichments of elements can be attributed to crustal, marine and anthropogenic sources. The (Mn)ner/(V)ner ratio showed differences with trajectory groups. The average...
Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature
Xin, X.; Altan, Hakan; Saint, A.; Matten, D.; Alfano, R. R. (2006-11-01)
Terahertz time-domain spectroscopy has been used to measure the absorption of water vapor in 0.2-2.4 THz range from low to high humidity at room temperature. The observed absorption lines are due to the water molecular rotations in the ground vibrational state. We find that the absorption strength of para transitions increases as humidity increases, while the absorption strength of ortho transitions increases and then decreases in intensity with increasing humidity. We explain this difference based on the n...
Electrochemical behaviour and electrochemical polymerization of fluoro-substituted anilines
Cihaner, A; Önal, Ahmet Muhtar (2002-08-01)
The electrochemical behaviour of three fluoro-substituted aniline monomers, 2-fluoroaniline (2FAN), 3-fluoroaniline (3FAN) and 4-fluoroaniline (4FAN), was investigated in aqueous acidic and organic media by means of cyclic voltammetry (CV) studies. Constant potential electrolysis (CPE) of the monomers in acetonitrile-water mixture (1: 1 by volume) using NaClO4 as supporting electrolyte yielded soluble polymers. The mechanism of electrochemical polymerization was investigated using in situ electron spin reso...
Polyaniline: synthesis characterization solution properties and composites
Yılmaz, Faris; Küçükyavuz, Zuhal; Department of Polymer Science and Technology (2007)
Polyaniline was chemically synthesized at three different temperatures of 25, 0, and -25oC, by oxidative polymerization with ammonium peroxidisulfate at equimolar of aniline to oxidant ratio and 1M HCl. The resulted polyaniline was in a powder form which was characterized by several techniques such as: electrical conductivity, elemental analysis, thermal analysis, wide-angle X-Ray diffraction, and scanning electron microscope. The solution properties of the reduced polymer were studied by viscometry, static...
Pyrolysis of of poly(methy methacrylate) copolymers
Ozlem-Gundogdu, Suriye; Gurel, Evren Aslan; Hacaloğlu, Jale (2015-05-01)
In this work, thermal degradation of copolymers of poly(methy methacrylate) namely, poly(methyl methacrylate-co-n-butyl acrylate), P(MMA-co-nBu), poly(methyl methacrylate-co-n-benzyl methacrylate) P(MMA-co-BzMA, and poly(methyl methacrylate-co-isobornyl acrylate), P(MMA-co-IBA) were investigated via direct pyrolysis mass spectrometry. It was determined that whether an available gamma-H with respect to the carbonyl groups is present or not determines the thermal degradation mechanisms of polyacrylates and po...
Citation Formats
R. BARZEGAR, S. Avşaroğlu, A. Yozgatlıgil, and A. Atımtay, “Pyrolysis characteristics of Turkish lignites in N-2 and CO2 environments,” ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, pp. 2467–2475, 2018, Accessed: 00, 2020. [Online]. Available: