Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Epoxidation of Propene by High-Throughput Screening Method Over Combinatorially Prepared Cu Catalysts Supported on High and Low Surface Area Silica
Download
index.pdf
Date
2012-10-01
Author
Duzenli, Derya
ŞEKER, EROL
Senkan, Selim
Önal, Işık
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
226
views
0
downloads
Cite This
Gas phase epoxidation of propene using molecular oxygen was studied by use of a high-throughput testing technique. A large number of catalysts including promoted and un-promoted Cu were synthesized in a much faster combinatorial fashion using a sol-gel method. Metal catalysts supported on high and low surface area silica were tested and ranked in a high-throughput activity and selectivity testing apparatus at different experimental conditions such as reaction temperature and reactant gas ratio. The amount of Cu loading and the addition of alkali promoters such as K and Li resulted in different tendencies in consumption rate for both silica materials. The maximum PO production rate was obtained as 25.82 mu mol/g/cat./min (2.90 % conv. and 20.49 % selectivity) for 3 % Cu-2.25 % K catalyst supported on high surface area silica. There was no noticeable difference in structural and chemical properties of catalysts after modification with K when examined by XRD and TEM; however, the overall activation energy of un-modified catalysts (92 kJ/mol) decreased to 71 kJ/mol for K-modified catalyst. There was negligible difference between the activation energies calculated for PO production (75 vs. 77 kJ/mol).
Subject Keywords
Propene
,
Epoxidation
,
Sol–gel
,
High-throughput
URI
https://hdl.handle.net/11511/30638
Journal
CATALYSIS LETTERS
DOI
https://doi.org/10.1007/s10562-012-0867-4
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Propylene Epoxidation: High-Throughput Screening of Supported Metal Catalysts Combinatorially Prepared by Rapid Sol-Gel Method
Önal, Işık; Seubsai, Anusorn; Kahn, Michael; ŞEKER, EROL; Senkan, Selim (2010-02-01)
The gas phase oxidation of propylene using molecular oxygen was studied on a variety of supported metal catalysts. The most promising PO activity was obtained for Cu supported on high surface area SiO(2) and the multimetallic systems exhibit synergistic effects that increased the desired PO yield by several folds for Ag promoted with Cu on SiO(2) after screening a large number of catalysts by a high throughput testing technique.
Direct epoxidation of propylene to propylene oxide on various catalytic systems: A combinatorial micro-reactor study
Kalyoncu, Sule; Duzenli, Derya; Önal, Işık; Seubsai, Anusorn; Noon, Daniel; Senkan, Selim (2015-02-10)
A combinatorial approach is used to investigate several bimetallic catalytic systems and the promoter effect on these catalysts to develop highly active and selective catalysts for direct epoxidation of propylene to propylene oxide (PO) using molecular oxygen. 2%Cu/5%Ru/c-SiO2 catalyst yielded the highest performance with high propylene conversion and PO selectivity among the bimetallic catalytic systems including silver, ruthenium, manganese and copper metals. On the other hand, the most effective catalyst...
Epoxidation reactions of small alkenes on catalytic surfaces
Kurnaz, Emine; Önal, Işık; Department of Chemical Engineering (2011)
Propylene epoxidation reaction was investigated on catalytic surfaces of chlorinated copper(I) oxide and ruthenium(IV) oxide using periodic density functional theory (DFT). Cu2O(001) and (110) surface of RuO2 was selected to generate chlorinated surfaces to be used in the study. Besides epoxidation, other reactions that compete with epoxidation were also studied such as formations of allyl-radical, acrolein, acetone on chlorinated Cu2O(001) and formations of propionaldehyde, allyl-radical and acetone on chl...
Adsorption calorimetry in supported catalyst characterization: Adsorption structure sensitivity on Pt/-gamma-Al2O3
Üner, Deniz (Elsevier BV, 2005-08-15)
In this study, the structure sensitivity of hydrogen, oxygen and carbon monoxide adsorption was investigated by changing the metal particle size of Pt/Al2O3 catalysts. The 2% Pt/Al2O3 catalysts were prepared by incipient wetness method; the particle size of the catalysts was modified by calcining at different temperatures. The differential heats of adsorption of hydrogen, carbon monoxide and oxygen were measured using a SETARAM C80 Tian-Calvet calorimeter. Hydrogen chemisorption sites with low and intermedi...
Adsorption calorimetry in supported catalyst characterization : adsorption structure sensitivity on pt(y-Al2o3
Üner, Murat; Üner, Deniz; Department of Chemical Engineering (2004)
In this study, the structure sensitivity of hydrogen, oxygen and carbon monoxide adsorption was investigated by changing the metal particle size of Pt/Al2O3 catalysts. 2 % Pt/Al2O3 catalysts were prepared by incipient wetness method; the particle size of the catalysts was manipulated by calcining at different temperatures. The dispersion values for the catalysts calcined in air at 683K, 773K and 823K were measured as 0.62, 0.20 and 0.03 respectively. The differential heats of adsorption of hydrogen, carbon ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Duzenli, E. ŞEKER, S. Senkan, and I. Önal, “Epoxidation of Propene by High-Throughput Screening Method Over Combinatorially Prepared Cu Catalysts Supported on High and Low Surface Area Silica,”
CATALYSIS LETTERS
, pp. 1234–1243, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30638.