Symmetric interior penalty Galerkin method for fractional-in-space phase-field equations

2018-01-01
Stoll, Martin
Yücel, Hamdullah
Fractional differential equations are becoming increasingly popular as a modelling tool to describe a wide range of non-classical phenomena with spatial heterogeneities throughout the applied sciences and engineering. However, the non-local nature of the fractional operators causes essential difficulties and challenges for numerical approximations. We here investigate the numerical solution of fractional-in-space phase-field models such as Allen-Cahn and Cahn-Hilliard equations via the contour integral method (CIM) for computing the fractional power of a matrix times a vector. Time discretization is performed by the first-and second-order implicit-explicit schemes with an adaptive time-step size approach, whereas spatial discretization is performed by a symmetric interior penalty Galerkin (SIPG) method. Several numerical examples are presented to illustrate the effect of the fractional power.
AIMS MATHEMATICS

Suggestions

Numerical studies of Korteweg-de Vries equation with random input data
Üreten, Mehmet Alp; Yücel, Hamdullah; Uğur, Ömür; Department of Scientific Computing (2018)
Differential equations are the primary tool to mathematically model physical phenomena in industry and natural science and to gain knowledge about its features. Deterministic differential equations does not sufficiently model physically observed phenomena since there exist naturally inevitable uncertainties in nature. Employing random variables or processes as inputs or coefficients of the differential equations yields a stochastic differential equation which can clarify unnoticed features of physical event...
Multigrid methods for optimal control problems governed by convection-diffusion equations
Arslantaş, Özgün Murat; Karasözen, Bülent; Yücel, Hamdullah; Department of Scientific Computing (2015)
Linear-quadratic optimal control problems governed by partial differential equations proved themselves important through their use in many real life applications. In order to solve the large scale linear system of equations that results from optimality conditions of the optimization problem, efficient solvers are required. For this purpose, multigrid methods, with an ordering technique to deal with the dominating convection, can be good candidates. This thesis investigates an application of the multigrid me...
Time-Space Adaptive Method of Time Layers for the Advective Allen-Cahn Equation
UZUNCA, MURAT; Karasözen, Bülent; Sariaydin-Filibelioglu, Ayse (2015-09-18)
We develop an adaptive method of time layers with a linearly implicit Rosenbrock method as time integrator and symmetric interior penalty Galerkin method for space discretization for the advective Allen-Cahn equation with nondivergence-free velocity fields. Numerical simulations for convection dominated problems demonstrate the accuracy and efficiency of the adaptive algorithm for resolving the sharp layers occurring in interface problems with small surface tension.
Formal Modelling Approaches to Complexity Science in Roman Studies: A Manifesto
Brughmans, Tom; Hanson, John; Mandich, Matthew; Romanowska, Iza; Rubio-Campillo, Xavi; Carrignon, Simon; Collins-Elliott, Stephen; Crawford, Katherine; Daems, Drıes; Fulminante, Francesca; De Haas, Timon; Kelly, P; Del Carmen Moreno Escobar, Maria; Paliou, Eleutheria; Prignano, Luce; Ritondale, Manuele (2019-07-01)
Complexity science refers to the theoretical research perspectives and the formal modelling tools designed to study complex systems. A complex system consists of separate entities interacting following a set of (often simple) rules that collectively give rise to unexpected patterns featuring vastly different properties than the entities that produced them. In recent years a number of case studies have shown that such approaches have great potential for furthering our understanding of the past phenomena expl...
Parallel preconditioning techniques for numerical solution of three dimensional partial differential equations
Sivas, Abdullah Ali; Manguoğlu, Murat; Department of Scientific Computing (2016)
Partial differential equations are commonly used in industry and science to model observed phenomena and gain insight regarding phenomena or solve related problems. Recently three dimensional partial differential equations started to become more and more essential and popular. Numerical solution of these problems usually is composed of two steps; discretization with some scheme and solving resulting sparse linear system which is large and usually ill-conditioned. Large size encourages usage of iterative sol...
Citation Formats
M. Stoll and H. Yücel, “Symmetric interior penalty Galerkin method for fractional-in-space phase-field equations,” AIMS MATHEMATICS, pp. 66–95, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30660.