Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
N2O decomposition on Fe- and Co-ZSM-5: A density functional study
Date
2008-09-30
Author
Fellah, Mehmet Ferdi
Önal, Işık
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
183
views
0
downloads
Cite This
Density functional theory (DFT) calculations are employed to study N2O decomposition on relaxed [(SiH3)(4)AlO4M] (where M = Fe, Co) cluster models representing Fe- and Co-ZSM-5 surfaces and Fe-ZSM-5 channel cluster. The catalytic cycle steps are completed both for Fe- and Co-ZSM-5 clusters. It is found that the general trend of the results obtained is in agreement with experimental and theoretical literature: Co-ZSM-5 has a lower activation energy barrier than Fe-ZSM-5 and O-2 desorption step is the rate-limiting step for both clusters. The activation barrier for the decomposition of the first N2O molecule inside a Fe-ZSM-5 channel cluster increases in comparison with that of the cluster model indicating a channel effect on the activation barrier. The activation barrier reported for the channel cluster is 12.63 kcal/mol. This is also in good agreement with experimental literature.
Subject Keywords
Channel effect
,
N2O decomposition
,
Co-ZSM-5
,
Fe-ZSM-5
,
DFT
URI
https://hdl.handle.net/11511/30686
Journal
CATALYSIS TODAY
DOI
https://doi.org/10.1016/j.cattod.2007.10.114
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
A density functional theory study of oxidation of benzene to phenol by N2O on Fe- and Co-ZSM-5 clusters
Fellah, Mehmet Ferdi; Önal, Işık (2009-06-01)
Density functional theory (DFT) calculations were carried out in the study of oxidation of benzene to phenol by N2O on relaxed [(SiH3)(4)AlO4M] (where M=Fe, Co) cluster models representing Fe- and Co-ZSM-5 surfaces. The catalytic cycle steps are completed for both Fe-ZSM-5 and Co-ZSM-5 clusters. The general trend of the results that were obtained in terms of activation barriers for the Fe-ZSM-5 cluster is in agreement with the experimental and theoretical literature. It was observed that the phenol formatio...
Direct Methane Oxidation to Methanol by N2O on Fe- and Co-ZSM-5 Clusters with and without Water: A Density Functional Theory Study
Fellah, Mehmet Ferdi; Önal, Işık (2010-02-25)
Density functional theory (DFT) calculations were carried Out ill a Study of oxidation of methane to methanol by N2O on the Fe- and Co-ZSM-5 clusters. The catalytic cycle steps have been Studied oil model Clusters ((SiH3)(4)AlO4M) (where M = Fe, Co). Calculations indicate very low methanol selectivity Without water and increasing rate of methanol formation with water. These results are in qualitative agreement with the experimental literature. The methanol formation step is also found to be the rate-limitin...
C-H bond activation of methane on M- and MO-ZSM-5 (M = Ag, Au, Cu, Rh and Ru) clusters: A density functional theory study
Fellah, Mehmet Ferdi; Önal, Işık (2011-08-10)
Density functional theory (DFT) calculations were carried out in a study of C-H bond activation of methane on [(SiH3)(4)AlO4(M, MO)] (where M = Ag, Au, Cu, Rh and Ru) cluster models representing ZSM-5 surfaces. The following activity order of clusters with respect to their activation barriers could be qualitatively classified: Au >> Rh > Cu = Ru > Ag for metal-ZSM-5 clusters and Ag > Cu > Au >> Rh > Ru for Metal-O-ZSM-5 clusters. Therefore, activation barriers based on transition state calculations showed t...
H-1, H-2, H-3, HE-4 EMISSION FROM RU-96 NUCLEI (E-ASTERISK-SIMILAR-TO-113 MEV) - TEST FOR TRANSMISSION COEFFICIENTS IN THE EVAPORATION MODEL
KILDIR, M; LARANA, G; MORO, R; BRONDI, A; DONOFRIO, A; PERILLO, E; ROCA, V; ROMANO, M; TERRASI, F; NEBBIA, G; VIESTI, G; PRETE, G (1992-12-01)
A detailed comparison between measured energy spectra and cross sections of H-1, H-2, H-3, and He-4, evaporated from the composite system 96Ru (E* congruent-to 113 MeV), and the predictions of the statistical model, has been carried out. Results obtained with transmission coefficients derived from optical model (OM), ingoing-wave boundary-condition model (IWBCM) and fusion systematics (FS) are presented. The best overall description of the data is obtained using IWBCM transmission coefficients, with reduced...
Thermo-Elastic and Lattice Dynamical Properties of Pd3X (X = Ti, Zr, Hf) Alloys: An Ab Initio Study
Sürücü, Gökhan; Colakoglu, K.; ÇİFTCİ, YASEMİN; Ozisik, H. B.; Deligoz, E. (2015-12-01)
Using the generalized-gradient approximation (GGA) based on density functional theory, we have reported the structural, mechanical, electronic, and lattice dynamical properties of the intermetallic compounds Pd3X (X = Ti, Zr, Hf) with D0(24) and the L1(2) structures. The elastic constants were predicted using the stress-finite strain technique. We performed numerical estimations of the bulk modulus, shear modulus, Young's modulus, Poisson's ratio anisotropy factor, G/B ratio, and hardness. Our studies have ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. F. Fellah and I. Önal, “N2O decomposition on Fe- and Co-ZSM-5: A density functional study,”
CATALYSIS TODAY
, pp. 410–417, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30686.