A density functional theory study of propylene epoxidation mechanism on Ag2O(001) surface

2018-11-07
Tezsevin, I.
van Santen, R. A.
Önal, Işık
Propylene oxide (PO) is one of the 50 most produced chemicals according to the production volume. Environmental and economic drawbacks of conventional PO production processes necessitate new production methods. Among the new production alternatives, direct epoxidation of propylene to propylene oxide by molecular oxygen is a highly desired method and seen as the holy grail of propylene epoxidation studies. In this study, the propylene epoxidation mechanism on an Ag2O(001) surface is investigated computationally by means of density functional theory (DFT) calculations using the Vienna Ab-initio Simulation Package (VASP). A perfect Ag2O(001) surface and a surface with one O vacancy are utilized for this purpose. It is found that propylene oxide can be directly formed on an Ag2O(001) surface whether there is an oxygen vacancy or not. The rate controlling step is PO desorption from both surfaces. PO isomers, i.e. acetone and propanal, can also be formed on these surfaces. However, activation barriers do exist for these molecules. Direct allyl formation on the Ag2O(001) surface is found to be unfavorable unlike what is proposed in the literature. On the other hand, it is observed that an allyl radical can be formed either via an oxametallocycle path or after the formation of propylene oxide. In fact, the discovered allyl radical formation pathway from propylene oxide is found as the most probable successive reaction pathway because of the high desorption barrier of PO.
PHYSICAL CHEMISTRY CHEMICAL PHYSICS

Suggestions

Development of sol-gel catalysts by use of fast combinatorial synthesis and high throughput testing techniques for catalytic oxidation of propylene to propylene oxide
Düzenli, Derya; Önal, Işık; Şeker, Erol; Department of Chemical Engineering (2010)
Propylene oxide (PO) is an important raw material for the chemical industry, which is produced commercially by the chlorohydrin process and hydroperoxide process. However the deficiencies in these processes have given rise to considerable interest in the development of a direct route to PO that does not produce by-products or coproducts. The development of novel, active and selective catalysts for gas phase oxidation of propylene using molecular oxygen were studied via testing a large number of catalysts by...
A study of thin film solid phase microextraction methods for analysis of fluorinated benzoic acids in seawater
Boyacı, Ezel; Viteri, C. Ricardo; Pawliszyn, Janusz (2016-03-04)
Fluorinated benzoic acids (FBAs) are frequently used as tracers by the oil industry to characterize petroleum reservoirs. The demand for fast, reliable, robust, and sensitive approaches to separate and quantify FBAs in produced water, both in laboratory and field conditions, has not been yet fully satisfied. In this study, for the first time, thin film solid phase microextraction (TF-SPME) is proposed as a versatile sample preparation tool for the determination of FBAs in produced water by pursing two diffe...
A comparative evaluation of anaerobic dechlorination of PCB-118 and Aroclor 1254 in sediment microcosms from three PCB-impacted environments
Kaya, Devrim; İmamoğlu, İpek; Sanin, Faika Dilek; Sowers, Kevin R. (Elsevier BV, 2018-01-05)
Aroclor 1254 (A1254) is the most toxic commercial PCB mixture produced, primarily due to its relatively high concentrations of dioxin-like congeners. This study demonstrates a comparative evaluation of dechlorination of A1254 and PCB-118 by indigenous organohalide respiring bacteria enriched from three PCB impacted sites: Grasse River (GR), NY; Fox River (FR), WI; and Baltimore Harbor (BH), MD. PCB 118 dechlorination rates in GR, BH, and FR was 0.0308, 0.015, and 0.0006 Cl-/biphenyl/day, respectively. A1254...
The synthesis and characterization of aluminum loaded SBA-type materials as catalyst for polypropylene degradation reaction
Obali, Zeynep; Sezgi, Naime Aslı; Doğu, Timur (2011-12-01)
The performance of pure and aluminum containing SBA-type catalysts prepared using different aluminum sources and different Al/Si ratios were investigated in the polypropylene degradation reaction using a thermogravimetric analyzer. For the synthesis of catalysts, aluminum isopropoxide and aluminum sulphate were used as the aluminum sources. Synthesized materials had high surface areas and exhibited nitrogen adsorption isotherms of type IV. EDS results showed that the aluminum incorporation into the structur...
A novel silica trap for lead determination by hydride generation atomic absorption spectrometry
Korkmaz, DK; Ertas, N; Ataman, Osman Yavuz (2002-03-15)
A novel silica trap for lead determination at concentration levels of ng/l was developed using hydride-generation atomic absorption spectrometry. The device consists of a 7.0-cm silica tubing which is externally heated to a desired temperature. The lead hydride vapor is generated by a conventional hydride-generation flow system. The trap is placed between the gas-liquid separator and silica T tube; the device traps analyte species at 500 degreesC and releases them when heated further to 750 degreesC. The ov...
Citation Formats
I. Tezsevin, R. A. van Santen, and I. Önal, “A density functional theory study of propylene epoxidation mechanism on Ag2O(001) surface,” PHYSICAL CHEMISTRY CHEMICAL PHYSICS, pp. 26681–26687, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30717.