Assessment of SLW-1 model in the presence of gray and non-gray particles

2019-02-01
Özen, Guzide
ATEŞ, CİHAN
Selçuk, Nevin
Külah, Görkem
In this study, predictive accuracy of Gray Gas and SLW-1 approximations is benchmarked against Spectral Line-Based Weighted Sum of Grey Gases Model (SLW) in multidimensional enclosures involving gray/non-gray absorbing, emitting and scattering particles. Input data required for the radiation code and its validation are provided from two combustion tests previously carried out in a 300 kWt Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) test rig burning low calorific value Turkish lignite with high volatile matter/fixed carbon (VM/FC) ratio in its own ash. Comparisons reveal that SLW-1 approximation leads to one order of magnitude higher accuracy in heat flux and source term predictions compared to that of Gray Gas approximation in the presence of gray particles while maintaining a similar computational efficiency. In the presence of non-gray particles, SLW-1 approximation is again found to improve the predictive accuracy compared to that of Gray Gas approximation. However, it is seen that errors in heat flux and source term predictions with SLW-1 approximation are noticeably higher in the presence of non-gray particles compared to those with gray particles.
INTERNATIONAL JOURNAL OF THERMAL SCIENCES

Suggestions

Influence of gray particle assumption on the predictive accuracy of gas property approximations
Ates, CİHAN; Selçuk, Nevin; Külah, Görkem (2018-11-01)
In this study, influence of gray particle assumption on the predictive accuracy of gas property models is investigated for conditions typically encountered in industrial coal-fired furnaces. The aim is (i) to identify how the share of gas radiation is influenced by the presence of particles and particle properties and (ii) to determine the effect of gray particle assumption on the predictive accuracy of gas property approximations. For that purpose, predictive accuracy of a simple gas property model is benc...
Assessment of gas radiative property models in the presence of nongray particles
Ates, CİHAN; OZEN, Guzide; Selçuk, Nevin; Külah, Görkem (2018-01-01)
In this study, a radiation code based on the method of lines solution of the discrete ordinates method for the prediction of radiative heat transfer in nongray gaseous media is developed by incorporation of two different spectral gas radiative property models, banded spectral line-based weighted sum of gray gases (banded SLW) and gray wide band (GWB) approximation in the presence of nongray absorbing-emitting-scattering particles. The aim is to introduce an accurate and CPU efficient spectral gas radiation ...
SENSITIVITY OF RADIATION MODELING TO PROPERTY ESTIMATION TECHNIQUES IN THE FREEBOARD OF LIGNITE- FIRED BUBBLING FLUIDIZED BED COMBUSTORS ( BFBCs)
Ozen, G.; Selçuk, Nevin (2014-05-04)
Predictive accuracy and computationally efficiency of method of lines (MOL) solution of the discrete ordinate method (DOM) coupled with different radiative property estimation techniques (GG, SLW, SNBCK) are assessed by applying them to the prediction of incident radiative fluxes along the freeboard walls of a 0.3 MWt atmospheric bubbling fluidized bed combustor (ABFBC) and comparing their predictions with measurements generated previously from two runs one without and the other with recycle. Freeboard is t...
Frequency Selective Characteristics of a Plasma Layer with Sinusoidally Varying Electron Density Profile
GÜREL, ÇİĞDEM SEÇKİN; Oencue, Emrah (Springer Science and Business Media LLC, 2009-06-01)
In this study reflection, absorbtion and transmission characteristics of a plasma layer having sinusoidally varying electron number density are analysed. In the analysis, plasma layer is divided into thin subslabs with constant electron number densities. The general frequency selective behavior of the plasma is investigated by varying the plasma parameters, external magnetic field excitation and sinusoidal electron distribution in order to be used in recent plasma applications.
Performance of banded SLW-1 in presence of non-gray walls and particles in fluidized bed combustors
Yaşar, Mehmet Soner; Selçuk, Nevin; Külah, Görkem (Elsevier BV, 2020-12-01)
In this study, banded one gas spectral line-based weighted sum of gray gases (banded SLW-1) model is coupled with a 3-D radiation code based on method of lines (MOL) solution of discrete ordinates method (DOM) for freeboard of METU 0.3 MWt atmospheric bubbling fluidized bed combustion (ABFBC) test rig containing non-gray gas, non-gray particle mixture bounded by non-gray walls. Spectral parameters of banded SLW-1 are estimated by the approach based on two emissivities calculated at two different path length...
Citation Formats
G. Özen, C. ATEŞ, N. Selçuk, and G. Külah, “Assessment of SLW-1 model in the presence of gray and non-gray particles,” INTERNATIONAL JOURNAL OF THERMAL SCIENCES, pp. 420–432, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30757.