Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Assessment of SLW-1 model in the presence of gray and non-gray particles
Date
2019-02-01
Author
Özen, Guzide
ATEŞ, CİHAN
Selçuk, Nevin
Külah, Görkem
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
243
views
0
downloads
Cite This
In this study, predictive accuracy of Gray Gas and SLW-1 approximations is benchmarked against Spectral Line-Based Weighted Sum of Grey Gases Model (SLW) in multidimensional enclosures involving gray/non-gray absorbing, emitting and scattering particles. Input data required for the radiation code and its validation are provided from two combustion tests previously carried out in a 300 kWt Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) test rig burning low calorific value Turkish lignite with high volatile matter/fixed carbon (VM/FC) ratio in its own ash. Comparisons reveal that SLW-1 approximation leads to one order of magnitude higher accuracy in heat flux and source term predictions compared to that of Gray Gas approximation in the presence of gray particles while maintaining a similar computational efficiency. In the presence of non-gray particles, SLW-1 approximation is again found to improve the predictive accuracy compared to that of Gray Gas approximation. However, it is seen that errors in heat flux and source term predictions with SLW-1 approximation are noticeably higher in the presence of non-gray particles compared to those with gray particles.
Subject Keywords
Radiative heat transfer
,
Non-gray particle radiation
,
SLW-1
,
SLW
,
Gas radiation
URI
https://hdl.handle.net/11511/30757
Journal
INTERNATIONAL JOURNAL OF THERMAL SCIENCES
DOI
https://doi.org/10.1016/j.ijthermalsci.2018.10.038
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Influence of gray particle assumption on the predictive accuracy of gas property approximations
Ates, CİHAN; Selçuk, Nevin; Külah, Görkem (2018-11-01)
In this study, influence of gray particle assumption on the predictive accuracy of gas property models is investigated for conditions typically encountered in industrial coal-fired furnaces. The aim is (i) to identify how the share of gas radiation is influenced by the presence of particles and particle properties and (ii) to determine the effect of gray particle assumption on the predictive accuracy of gas property approximations. For that purpose, predictive accuracy of a simple gas property model is benc...
SENSITIVITY OF RADIATION MODELING TO PROPERTY ESTIMATION TECHNIQUES IN THE FREEBOARD OF LIGNITE- FIRED BUBBLING FLUIDIZED BED COMBUSTORS ( BFBCs)
Ozen, G.; Selçuk, Nevin (2014-05-04)
Predictive accuracy and computationally efficiency of method of lines (MOL) solution of the discrete ordinate method (DOM) coupled with different radiative property estimation techniques (GG, SLW, SNBCK) are assessed by applying them to the prediction of incident radiative fluxes along the freeboard walls of a 0.3 MWt atmospheric bubbling fluidized bed combustor (ABFBC) and comparing their predictions with measurements generated previously from two runs one without and the other with recycle. Freeboard is t...
Assessment of gas radiative property models in the presence of nongray particles
Ates, CİHAN; OZEN, Guzide; Selçuk, Nevin; Külah, Görkem (2018-01-01)
In this study, a radiation code based on the method of lines solution of the discrete ordinates method for the prediction of radiative heat transfer in nongray gaseous media is developed by incorporation of two different spectral gas radiative property models, banded spectral line-based weighted sum of gray gases (banded SLW) and gray wide band (GWB) approximation in the presence of nongray absorbing-emitting-scattering particles. The aim is to introduce an accurate and CPU efficient spectral gas radiation ...
Performance of discrete ordinates method in a gas turbine combustor simulator
Kayakol, N; Selçuk, Nevin; Campbell, I; Gulder, OL (2000-03-01)
Predictive accuracy of discrete ordinates method (DOM) was assessed by applying it to the prediction of incident radiative fluxes on the walls of a gas turbine combustor simulator (GTCS) and comparing its predictions with measurements. Input data utilized for the DOM were measured gas concentration and temperature profiles and inner wall temperatures of the GTCS which is a cylindrical enclosure containing a turbulent diffusion flame of propane and air. Effects of order of approximation (S-4 and S-6) and usi...
Assessment of improved banded model for spectral thermal radiation in presence of non-gray particles in fluidized bed combustors
Yaşar, Mehmet Soner; Ozen, Guzide; Selçuk, Nevin; Külah, Görkem (2020-07-01)
In this study, Bordbar's banded model is coupled with a 3-D radiation model based on method of lines (MOL) solution of discrete ordinates method (DOM) for modeling of radiative heat transfer in freeboard of METU 0.3 MWt ABFBC test rig where a typical Turkish lignite is fired with and without fly ash recycling. The accuracy and the computational efficiency of the model were assessed by benchmarking its predictions against banded SLW model. Furthermore, in order to show the effect of gas composition on predic...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Özen, C. ATEŞ, N. Selçuk, and G. Külah, “Assessment of SLW-1 model in the presence of gray and non-gray particles,”
INTERNATIONAL JOURNAL OF THERMAL SCIENCES
, pp. 420–432, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30757.