Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
SENSITIVITY OF RADIATION MODELING TO PROPERTY ESTIMATION TECHNIQUES IN THE FREEBOARD OF LIGNITE- FIRED BUBBLING FLUIDIZED BED COMBUSTORS ( BFBCs)
Date
2014-05-04
Author
Ozen, G.
Selçuk, Nevin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
230
views
0
downloads
Cite This
Predictive accuracy and computationally efficiency of method of lines (MOL) solution of the discrete ordinate method (DOM) coupled with different radiative property estimation techniques (GG, SLW, SNBCK) are assessed by applying them to the prediction of incident radiative fluxes along the freeboard walls of a 0.3 MWt atmospheric bubbling fluidized bed combustor (ABFBC) and comparing their predictions with measurements generated previously from two runs one without and the other with recycle. Freeboard is treated as a three-dimensional rectangular enclosure containing a gray/non-gray, absorbing-emitting-isotropically scattering medium. Radiative properties of particles are evaluated by using geometric optics approximation. A comparative study is also provided between the source term distributions predicted by MOL solution of DOM with gray gas (GG), spectral line-based weighted sum of gray gases (SLW), and statistical narrow-band correlated-k (SNBCK) along the centerline of the freeboard for both runs. Comparisons reveal that the MOL solution of DOM with SLW model and geometric optics approximation provides accurate and computationally efficient solutions for wall fluxes and source term distributions in the freeboard of fluidized bed combustors containing particle laden combustion gases.
Subject Keywords
SNBCK model
,
SLW model
,
Non-gray gas
,
Method of lines
,
Geometric optics
URI
https://hdl.handle.net/11511/32096
Journal
COMBUSTION SCIENCE AND TECHNOLOGY
DOI
https://doi.org/10.1080/00102202.2014.883848
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Assessment of SLW-1 model in the presence of gray and non-gray particles
Özen, Guzide; ATEŞ, CİHAN; Selçuk, Nevin; Külah, Görkem (2019-02-01)
In this study, predictive accuracy of Gray Gas and SLW-1 approximations is benchmarked against Spectral Line-Based Weighted Sum of Grey Gases Model (SLW) in multidimensional enclosures involving gray/non-gray absorbing, emitting and scattering particles. Input data required for the radiation code and its validation are provided from two combustion tests previously carried out in a 300 kWt Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) test rig burning low calorific value Turkish lignite with high vola...
Comparison of method of lines and finite difference solutions of 2-D Navier-Stokes equations for transient laminar pipe flow
Selçuk, Nevin; Tanrikulu, S (2002-03-10)
Performances of method of lines (MOL) and finite difference method (FDM) were tested from the viewpoints of solution accuracy and central processing unit (CPU) time by applying them to the solution of time-dependent 2-D Navier-Stokes equations for transient laminar flow without/with sudden expansion and comparing their results with steady-state numerical predictions and measurements previously reported in the literature. Predictions of both methods were obtained on the same computer by using the same order ...
Performance of discrete ordinates method in a gas turbine combustor simulator
Kayakol, N; Selçuk, Nevin; Campbell, I; Gulder, OL (2000-03-01)
Predictive accuracy of discrete ordinates method (DOM) was assessed by applying it to the prediction of incident radiative fluxes on the walls of a gas turbine combustor simulator (GTCS) and comparing its predictions with measurements. Input data utilized for the DOM were measured gas concentration and temperature profiles and inner wall temperatures of the GTCS which is a cylindrical enclosure containing a turbulent diffusion flame of propane and air. Effects of order of approximation (S-4 and S-6) and usi...
Radiative Heat Transfer in the Dilute Zone of an Air-Fired Circulating Fluidized Bed Combustor and Its Oxy-Fired Retrofit
Ozen, G.; Aydin, F.; Selçuk, Nevin (2016-01-01)
A 2D radiation model based on method of lines (MOL) solution of discrete ordinates method (DOM) coupled with spectral line-based weighted sum of gray gases model (SLW) is developed to predict radiative heat fluxes along the dilute zone of the lignite-fired 150 kWt Middle East Technical University (METU) circulating fluidized bed combustor (CFBC) under both air-fired and oxy-fired conditions. The dilute zone is treated as an axisymmetric cylindrical enclosure containing a non-gray, absorbing-emitting-isotrop...
An application of Spectral line-based weighted sum of grey gases (SLW) model with geometric optics approximation for radiative heat transfer in 3-D participating media
DÖNER, NİMETİ; Selçuk, Nevin (2013-01-10)
A three-dimensional radiation code based on method of lines (MOL) solution of discrete ordinates method (DOM) coupled with spectral line-based weighted sum of grey gases (SLW) model and geometric optics approximation for particles is developed and its predictive ability is tested by applying it to the freeboard of a 0.3 MWt Atmospheric Bubbling Fluidized Bed Combustor (ABFBC) containing a non-grey, absorbing, emitting and isotropically scattering particle laden flue gas and comparing its predictions with me...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Ozen and N. Selçuk, “SENSITIVITY OF RADIATION MODELING TO PROPERTY ESTIMATION TECHNIQUES IN THE FREEBOARD OF LIGNITE- FIRED BUBBLING FLUIDIZED BED COMBUSTORS ( BFBCs),”
COMBUSTION SCIENCE AND TECHNOLOGY
, pp. 684–697, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32096.