Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Efficient multiplication in double-struck F sign3ℓm, m ≥ 1 and 5 ≤ ℓ ≤ 18
Date
2008-06-14
Author
Cenk, Murat
Özbudak, Ferruh
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
174
views
0
downloads
Cite This
Using a method based on Chinese Remainder Theorem for polynomial multiplication and suitable reductions, we obtain an efficient multiplication method for finite fields of characteristic 3. Large finite fields of characteristic 3 are important for pairing based cryptography [3]. For 5 <= l <= 18, we show that our method gives canonical multiplication formulae over F-3lm for any m >= 1 with the best multiplicative complexity improving the bounds in [6]. We give explicit formula in the case F-36.97.
Subject Keywords
Chinese Remainder Theorem
,
Finite field multiplication
,
Pairing based cryptography
URI
https://hdl.handle.net/11511/30779
DOI
https://doi.org/10.1007/978-3-540-68164-9_27
Conference Name
1st International Conference on Cryptology in Africa
Collections
Graduate School of Applied Mathematics, Conference / Seminar
Suggestions
OpenMETU
Core
Efficient multiplications in F(5)5n and F(7)7n
Cenk, Murat; Özbudak, Ferruh (2011-08-15)
Efficient multiplications in finite fields of characteristics 5 and 7 are used for computing the Eta pairing over divisor class groups of the hyperelliptic curves Lee et al. (2008) [1]. In this paper, using the recent methods for multiplication in finite fields, the explicit formulas for multiplication in F(5)5n and F(7)7n are obtained with 10 multiplications in F(5)n for F(5)5n and 15 multiplications in F(7)n for F(7)7n improving the results in Cenk and Ozbudak (2008) [4], Cenk et al. (2009) [5], Lee et al...
Improved Polynomial Multiplication Formulas over F-2 Using Chinese Remainder Theorem
Cenk, Murat; Özbudak, Ferruh (2009-04-01)
Let n and l be positive integers and f(x) be an irreducible polynomial over F-2 such that ldeg(f(x)) < 2n - 1. We obtain an effective upper bound for the multiplication complexity of n-term polynomials modulo f(x)(l). This upper bound allows a better selection of the moduli when the Chinese Remainder Theorem is used for polynomial multiplication over F-2. We give improved formulas to multiply polynomials of small degree over F-2. In particular, we improve the best known multiplication complexities over F-2 ...
Efficient interleaved Montgomery modular multiplication for lattice-based cryptography
AKLEYLEK, SEDAT; Tok, Zaliha Yuce (2014-01-01)
In this paper, we give modified version of interleaved Montgomery modular multiplication method for lattice-based cryptography. With the proposed algorithms, we improve the multiplication complexity and embed the conversion operation into the algorithm with almost free cost. We implement the proposed methods for the quotient ring (Z/qZ)[x]/(x(n) - 1) and (Z/pZ)[x]/(x(n) + 1) on the GPU (NVIDIA Quadro 600) using the CUDA platform. NTRUEncrypt is accelerated approximately 35% on the GPU by using the proposed ...
Sparse polynomial multiplication for lattice-based cryptography with small complexity
Akleylek, Sedat; Alkim, Erdem; Tok, Zaliha Yuce (2016-02-01)
In this paper, we propose efficient modular polynomial multiplication methods with applications in lattice-based cryptography. We provide a sparse polynomial multiplication to be used in the quotient ring (Z/pZ)[x]/(x(n) + 1). Then, we modify this algorithm with sliding window method for sparse polynomial multiplication. Moreover, the proposed methods are independent of the choice of reduction polynomial. We also implement the proposed algorithms on the Core i5-3210M CPU platform and compare them with numbe...
Additive polynomials and primitive roots over finite fields
Özbudak, Ferruh (2001-01-01)
We prove existence of primitive roots with a prescribed nonzero image using the arithmetic of algebraic function fields for a class of polynomials over sufficiently large finite fields.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Cenk and F. Özbudak, “Efficient multiplication in double-struck F sign3ℓm, m ≥ 1 and 5 ≤ ℓ ≤ 18,” presented at the 1st International Conference on Cryptology in Africa, Casablanca, MOROCCO, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30779.