Adjoints of operator ideals.

1976
Yurdakul, Murat Hayrettin

Suggestions

Distributive algebras of polynomial types.
Al-Halees, Hasan A; Department of Mathematics (1981)
Invariant subspaces of collectively compact sets of linear operators
Alpay, Safak; Misirlioglu, Tunc (Springer Science and Business Media LLC, 2008-01-01)
In this paper, we first give some invariant subspace results for collectively compact sets of operators in connection with the joint spectral radius of these sets. We then prove that any collectively compact set M in alg Gamma satisfies Berger-Wang formula, where Gamma is a complete chain of subspaces of X.
Equivariant CW-complexes and the orbit category
Hambleton, Ian; Pamuk, Semra; YALÇIN, ERGÜN (European Mathematical Society Publishing House, 2013-01-01)
We give a general framework for studying G-CW complexes via the orbit category. As an application we show that the symmetric group G = S-5 admits a finite G-CW complex X homotopy equivalent to a sphere, with cyclic isotropy subgroups.
NONCOMMUTATIVE HOLOMORPHIC FUNCTIONAL CALCULUS, AFFINE AND PROJECTIVE SPACES FROM NC-COMPLETE ALGEBRAS
Dosi, A. (American Mathematical Society (AMS), 2020-01-01)
The paper is devoted to a noncommutative holomorphic functional calculus and its application to noncommutative algebraic geometry. A description is given for the noncommutative (infinite-dimensional) affine spaces A(q)(x), 1 = 0, are calculated.
Noncommutative affine spaces and Lie-complete rings
Dosi, Anar (2015-02-01)
In this paper, we investigate the structure sheaves of an (infinite-dimensional) affine NC-space A(nc)(x) affine Lie-space A(lich)(x), and their nilpotent perturbations A(nc,q)(x) and A(lich),(x)(q) respectively. We prove that the schemes A(nc)(x) and A(lich)(x) are identical if and only if x is a finite set of variables, that is, when we deal with finite-dimensional noncommutative affine spaces. For each (Zariski) open subset U subset of X = Spec(C vertical bar x vertical bar), we obtain the precise descri...
Citation Formats
M. H. Yurdakul, “Adjoints of operator ideals.,” Middle East Technical University, 1976.