Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis

2015-06-01
Gurgan, Muazzez
Erkal, Nilufer Afsar
Ozgur, Ebru
Gündüz, Ufuk
Eroglu, Inci
Yücel, Ayşe Meral
Biohydrogen is a clean and renewable form of hydrogen, which can be produced by photosynthetic bacteria in outdoor large-scale photobioreactors using sunlight. In this study, the transcriptional response of Rhodobacter capsulatus to cold (4 degrees C) and heat (42 degrees C) stress was studied using microarrays. Bacteria were grown in 30/2 acetate/glutamate medium at 30 degrees C for 48 h under continuous illumination. Then, cold and heat stresses were applied for two and six hours. Growth and hydrogen production were impaired under both stress conditions. Microarray chips for R. capsulatus were custom designed by Affymetrix (GeneChip((R)). TR_RCH2a520699F). The numbers of significantly changed genes were 328 and 293 out of 3685 genes under cold and heat stress, respectively. Our results indicate that temperature stress greatly affects the hydrogen production metabolisms of R. capsulatus. Specifically, the expression of genes that participate in nitrogen metabolism, photosynthesis and the electron transport system were induced by cold stress, while decreased by heat stress. Heat stress also resulted in down regulation of genes related to cell envelope, transporter and binding proteins. Transcriptome analysis and physiological results were consistent with each other. The results presented here may aid clarification of the genetic mechanisms for hydrogen production in purple non-sulfur (PNS) bacteria under temperature stress.
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES

Suggestions

Microarray analysis of the effects of light intensity on hydrogen production metabolism of rhodobacter capsulatus
Gürgan Eser, Muazzez; Yücel, Ayşe Meral; Koku, Harun; Department of Biology (2017)
Biohydrogen generated by purple non-sulfur bacteria is a clean and renewable method of hydrogen production. It can be achieved in outdoor phototobioreactors using the natural sun light in lab to pilot scales. Light is one of the most important parameter affecting hydrogen production in the outdoor condition. Hydrogen productivity may decrease upon light intensity stress by sun light and the diurnal cycle in outdoor conditions. It is important to understand the metabolic response of these bacteria to varying...
Transcriptional analysis of hydrogenase genes in rhodobacter sphaeroides O.U.001
Doğrusöz, Nihal; Gündüz, Ufuk; Department of Biology (2004)
In photosynthetic non-sulphur bacteria, hydrogen production is catalyzed by nitrogenases and hydrogenases. Hydrogenases are metalloenzymes that are basically classified into: the Fe hydrogenases, the Ni-Fe hydrogenases and metal-free hydrogenases. Two distinct Ni-Fe hydrogenases are described as uptake hydrogenases and bidirectional hydrogenases. The uptake hydrogenases are membrane bound dimeric enzymes consisting of small (hupS) and large (hupL) subunits, and are involved in uptake and the recycling of hy...
Design and analysis of tubular photobioreactors for biohydrogen production
Kayahan, Emine; Eroğlu, İnci; Koku, Harun; Department of Chemical Engineering (2015)
Hydrogen can be produced sustainably by utilizing organic wastes through photofermentation. In order to obtain an economically feasible operation, the photobioreactor design is of crucial importance. An optimal photobioreactor design should provide uniform velocity and light distribution, low pressure drop, low gas permeability and efficient gas-liquid separation. The aim of this study was to design a pilot-scale photobioreactor satisfying these criteria and to test the reactor under outdoor conditions with...
Biohydrogen production by immobilized purple nonsulfur bacteria
Sağır, Emrah; Yücel, Ayşe Meral; Koku, Harun; Department of Biochemistry (2018)
Biological hydrogen production by purple non-sulfur bacteria is an attractive route to build a large scale hydrogen production system in outdoor natural conditions from various renewable sources. In this study, biological hydrogen production was carried out by agar immobilized purple non-sulfur bacteria in indoor and outdoor conditions. A novel photobioreactor (1.4 L volume) was built and operated continuously for 20 to 64 days in sequential batch mode for long-term hydrogen production using agar-immobilize...
Transcriptome analysis of the effects of light and dark cycle on hydrogen production metabolism of Rhodobacter capsulatus DSM1710
Gürgan, Muazzez; Koku, Harun; Eroglu, Inci; Yücel, Meral (Elsevier BV, 2020-01-01)
© 2020 Hydrogen Energy Publications LLCPhotosynthetic purple non sulfur bacteria can be utilized in outdoor photobioreactors for sustainable large-scale biohydrogen production. However, the diurnal cycle under natural outdoor conditions affects hydrogen productivity and yield. Here, we investigated the effect of light and dark cycles on the hydrogen production metabolism of Rhodobacter capsulatus DSM1710 using custom-designed Affymetrix Gene Chip technology. R. capsulatus was grown by cyclic illumination on...
Citation Formats
M. Gurgan, N. A. Erkal, E. Ozgur, U. Gündüz, I. Eroglu, and A. M. Yücel, “Transcriptional Profiling of Hydrogen Production Metabolism of Rhodobacter capsulatus under Temperature Stress by Microarray Analysis,” INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, pp. 13781–13797, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30859.