Design and analysis of tubular photobioreactors for biohydrogen production

Download
2015
Kayahan, Emine
Hydrogen can be produced sustainably by utilizing organic wastes through photofermentation. In order to obtain an economically feasible operation, the photobioreactor design is of crucial importance. An optimal photobioreactor design should provide uniform velocity and light distribution, low pressure drop, low gas permeability and efficient gas-liquid separation. The aim of this study was to design a pilot-scale photobioreactor satisfying these criteria and to test the reactor under outdoor conditions with purple non sulphur bacteria. A glass, stacked tubular bioreactor aimed at satisfying these criteria has been designed for outdoor photofermentative hydrogen production. The design consists of 4 stacked U-tubes and 2 vertical manifolds. The hydrodynamics of the 3-dimensional model of this reactor was solved via COMSOL Multiphysics 4.1. Two reactors, whose volumes were 9 and 11 L, were constructed based on the dimensions obtained by the model. A reactor was constructed based on the dimensions obtained by the model. The reactor was operated with recirculation of culture containing Rhodobacter capsulatus YO3 (hup-). Every morning 10% of the culture was replaced by fresh feed. Experiments were lasted 10- 20 days. When molasses was used as the carbon source under outdoor conditions, the highest hydrogen productivity was found as 0.311 mol H2/(m3.h). Another parallel reactor working with acetic acid which was also run in July 2015, the highest productivity was found as 0.114 mol H2/(m3.h). Compared to nearly horizontal tubular reactors, the glass stacked tubular reactor design results in less ground area and longer life time.

Suggestions

Microarray analysis of the effects of light intensity on hydrogen production metabolism of rhodobacter capsulatus
Gürgan Eser, Muazzez; Yücel, Ayşe Meral; Koku, Harun; Department of Biology (2017)
Biohydrogen generated by purple non-sulfur bacteria is a clean and renewable method of hydrogen production. It can be achieved in outdoor phototobioreactors using the natural sun light in lab to pilot scales. Light is one of the most important parameter affecting hydrogen production in the outdoor condition. Hydrogen productivity may decrease upon light intensity stress by sun light and the diurnal cycle in outdoor conditions. It is important to understand the metabolic response of these bacteria to varying...
Investigation Of Influencing Factors For Biological Hydrogen Production By R. Capsulatus In Tubular Photo-Bioreactors
Boran, E.; Ozgur, E.; Gebicki, J.; van der Burg, J.; YÜCEL, MUSTAFA; Gündüz, Ufuk; Modigel, M.; Eroglu, I. (2009-05-13)
Biological hydrogen production processes are considered as an environmentally friendly way to produce hydrogen. They offer the chance to produce hydrogen from renewable energy sources, like sunlight and biomass. This study aims the process development for a photo-fermentative hydrogen production by photosynthetic purple-non-sulfur bacteria, Rhodobacter capsulatus, in a large scale (80L) tubular photo-bioreactor, in outdoor conditions, using acetate as carbon source. It was shown that Rhodobacter capsulatus ...
A compact tubular photobioreactor for outdoor hydrogen production from molasses
KAYAHAN, Emine; Eroglu, Inci; Koku, Harun (2017-01-26)
Hydrogen can be produced sustainably by photofermentation of biomass. For an economically feasible operation, the process should be implemented outdoors using low-cost organic material. In the current study, molasses from a sugar factory was utilized for photofermentative hydrogen production. The experiment was run with Rhodobacter capsulatus YO3 (hup-) in fed-batch mode under outdoor conditions in Ankara between July 12, 2015 and July 24, 2015. The stacked U-tube photobioreactor (9 L) designed for outdoor ...
Design of an outdoor stacked - tubular reactor for biological hydrogen production
KAYAHAN, Emine; Eroglu, Inci; Koku, Harun (Elsevier BV, 2016-11-02)
Photofermentation is one alternative to produce hydrogen sustainably. The photobioreactor design is of crucial importance for an economically feasible operation, and an optimal design should provide uniform velocity and light distribution, low pressure drop, low gas permeability and efficient gas-liquid separation. A glass, stacked tubular bioreactor aimed at satisfying these criteria has been designed for outdoor photofermentative hydrogen production by purple non sulfur bacteria. The design consists of 4 ...
Investigation of the effects of initial substrate and biomass concentrations and light intensity on photofermentative hydrogen gas production by Response Surface Methodology
Akman, Melih Can; Bayramoğlu, Tuba Hande; Gündüz, Ufuk; EROĞLU, İNCİ (2015-04-27)
Biohydrogen, which can be produced by dark fermentation and photofermentation processes, is a renewable and clean approach for hydrogen production. In this study, it was aimed to determine the operational conditions which satisfy the highest photofermentative hydrogen production rate in batch reactors. To that purpose, the effects of initial substrate concentration, initial volatile suspended solids (VSS) concentration and light intensity on photofermentation process, and their interactive effects were inve...
Citation Formats
E. Kayahan, “Design and analysis of tubular photobioreactors for biohydrogen production,” M.S. - Master of Science, Middle East Technical University, 2015.