Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design and analysis of tubular photobioreactors for biohydrogen production
Download
index.pdf
Date
2015
Author
Kayahan, Emine
Metadata
Show full item record
Item Usage Stats
310
views
137
downloads
Cite This
Hydrogen can be produced sustainably by utilizing organic wastes through photofermentation. In order to obtain an economically feasible operation, the photobioreactor design is of crucial importance. An optimal photobioreactor design should provide uniform velocity and light distribution, low pressure drop, low gas permeability and efficient gas-liquid separation. The aim of this study was to design a pilot-scale photobioreactor satisfying these criteria and to test the reactor under outdoor conditions with purple non sulphur bacteria. A glass, stacked tubular bioreactor aimed at satisfying these criteria has been designed for outdoor photofermentative hydrogen production. The design consists of 4 stacked U-tubes and 2 vertical manifolds. The hydrodynamics of the 3-dimensional model of this reactor was solved via COMSOL Multiphysics 4.1. Two reactors, whose volumes were 9 and 11 L, were constructed based on the dimensions obtained by the model. A reactor was constructed based on the dimensions obtained by the model. The reactor was operated with recirculation of culture containing Rhodobacter capsulatus YO3 (hup-). Every morning 10% of the culture was replaced by fresh feed. Experiments were lasted 10- 20 days. When molasses was used as the carbon source under outdoor conditions, the highest hydrogen productivity was found as 0.311 mol H2/(m3.h). Another parallel reactor working with acetic acid which was also run in July 2015, the highest productivity was found as 0.114 mol H2/(m3.h). Compared to nearly horizontal tubular reactors, the glass stacked tubular reactor design results in less ground area and longer life time.
Subject Keywords
Bioreactors.
,
Biohydrogen.
,
Photofermentation.
,
Rhodobacter capsulatus.
URI
http://etd.lib.metu.edu.tr/upload/12619241/index.pdf
https://hdl.handle.net/11511/24965
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Microarray analysis of the effects of light intensity on hydrogen production metabolism of rhodobacter capsulatus
Gürgan Eser, Muazzez; Yücel, Ayşe Meral; Koku, Harun; Department of Biology (2017)
Biohydrogen generated by purple non-sulfur bacteria is a clean and renewable method of hydrogen production. It can be achieved in outdoor phototobioreactors using the natural sun light in lab to pilot scales. Light is one of the most important parameter affecting hydrogen production in the outdoor condition. Hydrogen productivity may decrease upon light intensity stress by sun light and the diurnal cycle in outdoor conditions. It is important to understand the metabolic response of these bacteria to varying...
A compact tubular photobioreactor for outdoor hydrogen production from molasses
KAYAHAN, Emine; Eroglu, Inci; Koku, Harun (2017-01-26)
Hydrogen can be produced sustainably by photofermentation of biomass. For an economically feasible operation, the process should be implemented outdoors using low-cost organic material. In the current study, molasses from a sugar factory was utilized for photofermentative hydrogen production. The experiment was run with Rhodobacter capsulatus YO3 (hup-) in fed-batch mode under outdoor conditions in Ankara between July 12, 2015 and July 24, 2015. The stacked U-tube photobioreactor (9 L) designed for outdoor ...
Design of an outdoor stacked - tubular reactor for biological hydrogen production
KAYAHAN, Emine; Eroglu, Inci; Koku, Harun (Elsevier BV, 2016-11-02)
Photofermentation is one alternative to produce hydrogen sustainably. The photobioreactor design is of crucial importance for an economically feasible operation, and an optimal design should provide uniform velocity and light distribution, low pressure drop, low gas permeability and efficient gas-liquid separation. A glass, stacked tubular bioreactor aimed at satisfying these criteria has been designed for outdoor photofermentative hydrogen production by purple non sulfur bacteria. The design consists of 4 ...
Investigation Of Influencing Factors For Biological Hydrogen Production By R. Capsulatus In Tubular Photo-Bioreactors
Boran, E.; Ozgur, E.; Gebicki, J.; van der Burg, J.; YÜCEL, MUSTAFA; Gündüz, Ufuk; Modigel, M.; Eroglu, I. (2009-05-13)
Biological hydrogen production processes are considered as an environmentally friendly way to produce hydrogen. They offer the chance to produce hydrogen from renewable energy sources, like sunlight and biomass. This study aims the process development for a photo-fermentative hydrogen production by photosynthetic purple-non-sulfur bacteria, Rhodobacter capsulatus, in a large scale (80L) tubular photo-bioreactor, in outdoor conditions, using acetate as carbon source. It was shown that Rhodobacter capsulatus ...
Biological hydrogen production by using co-cultures of PNS bacteria
Baysal, Görkem; Yücel, Ayşe Meral; Özgür, Ebru; Department of Biotechnology (2012)
Biological hydrogen production is a renewable, carbon-neutral and clean route for hydrogen production. Purple non-sulfur (PNS) bacteria have the ability to produce biohydrogen via photofermentation process. The type of the bacterial strain used in photofermentation is known to have an important effect on hydrogen yield. In this study, the effect of different co-cultures of PNS bacteria on photofermentation process was investigated in search of improving the hydrogen yield. For this purpose, growth, hydrogen...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Kayahan, “Design and analysis of tubular photobioreactors for biohydrogen production,” M.S. - Master of Science, Middle East Technical University, 2015.