Preparation and characterization of polymer coated superparamagnetic magnetite nanoparticle agglomerates

2009-05-01
In order to produce magnetic microparticles (agglomerates), magnetite (Fe3O4) particles were synthesized using coprecipitation of FeSO4 center dot 7H(2)O and FeCl3 center dot 6H(2)O with the presence of poly (methacrylic acid) (PMAA) in aqueous solution.. Transmission electron microscopy (TEM), X-ray diffraction, and vibrating sample magnetometry (VSM) methods were used to characterize the PMAA coated superparamagnetic agglomerates. The influences of various processing parameters such as the process temperature, PMAA content, and the addition of surfactant on the agglomerate size and size distribution of produced magnetic microparticles were investigated. The particle size and size distribution characteristics, (the volume weighted mean size (1)[4,31, surface weighted mean size D[3,2], the geometric standard deviation, and span value) of the magnetic agglomerates were determined using the laser diffraction technique. The PMAA coated magnetic agglomerates with surface weighted mean sizes ranging from 1.5 to 3 mu m were produced successfully.
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS

Suggestions

Preparation and characterization of magnetic nanoparticles
Küçük, Burcu; Volkan, Mürvet; Department of Chemistry (2009)
Magnetite (Fe3O4) and Maghemite (γ-Fe2O3) are well-known iron oxide phases among magnetic nanoparticles due to their magnetic properties, chemical stability, and nontoxicity. They have gained acceptance in several fields of application of nanomaterials such as magnetic recording systems, magnetic refrigeration, magneto-optical devices, magnetic resonance imaging, magnetic separation techniques and separation and purification of biological molecules. Recently, there is a growing interest in the synthesis of ...
Synthesis of zinc oxide nanoparticles by aqueous methods and effect of metal incorporation on the structural/functional properties of nanoparticles
Altıntaş Yıldırım, Özlem; Durucan, Caner; Department of Metallurgical and Materials Engineering (2014)
Zinc oxide (ZnO) nanostructures have attracted considerable attention in many electrical, optoelectronic and magnetic applications due to their unique properties originating form characteristic wide band gap and large exciton binding energy of ZnO. Electrical, optical and magnetic properties of ZnO nanostructures strongly depend on their size and morphology. Therefore, there has been a strong interest in the synthesis of ZnO nanostructures with well-controlled size and shape. These synthesis approaches shou...
Synthesis of BaHF Ceramics by Microwave Heating
Emel, Erdal; Tulbez, Sımge; Dericioğlu, Arcan Fehmi (null; 2016-11-25)
Barium hexaferrite (BaFe12O19, BaHF) is an important magnetic material due to its effective electromagnetic wave absorbing characteristics. The most convenient way of producing BaHF ceramics is mixed oxide method in which BaHF powders are synthesized from Fe2O3 and BaCO3 starting materials by the action of heat. The calcination process is typically conducted by conventional heating under ambient atmosphere. However, microwave heating can be ...
Production of graded porous polyamide structures and polyamide-epoxy composites via selective laser sintering
Jande, Yusufu A. C.; Erdal Erdoğmuş, Merve; Dağ, Serkan (SAGE Publications, 2014-06-01)
Selective laser sintering was used for producing uniformly porous and graded porous polyamide structures. The porous structures were infiltrated with epoxy to produce composites. The porous and composite specimens were physically and mechanically characterized. Within the capabilities of the selective laser sintering machine and the materials used, porosities in the range 5-29% could be obtained in a controlled, repeatable manner. The ultimate tensile strength of the produced uniformly porous polyamide stru...
Synthesis of uniformly distributed single- and double-sided zinc oxide (ZnO) nanocombs
Yıldırım, Özlem Altıntaş; Liu, Yuzi; Petford-Long, Amanda K. (Elsevier BV, 2015-11-15)
Uniformly distributed single- and double-sided zinc oxide (ZnO) nanocomb structures have been prepared by a vapor-liquid-solid technique from a mixture of ZnO nanoparticles and graphene nanoplatelets. The ZnO seed nanoparticles were synthesized via a simple precipitation method. The structure of the ZnO nanocombs could easily be controlled by tuning the carrier-gas flow rate during growth. Higher flow rate resulted in the formation of uniformly-distributed single-sided comb structures with nanonail-shaped t...
Citation Formats
B. TURAL, N. Özkan, and M. Volkan, “Preparation and characterization of polymer coated superparamagnetic magnetite nanoparticle agglomerates,” JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, pp. 860–866, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30896.