Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Preparation and characterization of magnetic nanoparticles
Download
index.pdf
Date
2009
Author
Küçük, Burcu
Metadata
Show full item record
Item Usage Stats
239
views
146
downloads
Cite This
Magnetite (Fe3O4) and Maghemite (γ-Fe2O3) are well-known iron oxide phases among magnetic nanoparticles due to their magnetic properties, chemical stability, and nontoxicity. They have gained acceptance in several fields of application of nanomaterials such as magnetic recording systems, magnetic refrigeration, magneto-optical devices, magnetic resonance imaging, magnetic separation techniques and separation and purification of biological molecules. Recently, there is a growing interest in the synthesis of magnetic iron oxide nanoparticles in a polymeric, glassy or ceramic matrix since the preparation of pure phase iron oxide composite material involves, presently, some difficulties partially arising from different oxidation states of iron which can lead to the presence of various oxides. Matrix support, in principle, modifies the properties of nanomaterials, thus opening new possibilities for the control of their performance. In addition, the chosen matrix, polymer or sol-gel, provides binding of the functional groups and also prevents grain growth and agglomeration. Therefore, extensive research is conducted on this subject. Sonochemical technique is an effective method to synthesize magnetic nanoparticles with many unique properties due to extreme reaction conditions. Besides, a microscopic mixing in the synthesis procedure is obtained because of the microjet effect which comes from the collapse of the bubbles. This effect creates relatively uniform reaction conditions. Thus, well-dispersed and stable nanoparticles are obtained by using ultrasound. In this study, γ-Fe2O3, maghemite nanoparticles are accommodated in an inert, inorganic, transparent and temperature resistant sol gel matrix to achieve stabilization. The nature and concentration of the salt used, evaporation conditions of the sols, the following heat treatments had been investigated and shown that they had great influence on the particle size and the final iron oxide phase in the sol-gel. The Fe2O3/SiO2 nanocomposites were characterized using X-ray diffraction (XRD) and vibrating sample magnetometry (VSM) techniques. In addition, magnetite (Fe3O4) nanoparticles were synthesized via co-precipitation in the presence of poly(methacrylic acid) (PMAA) in aqueous solution. PMAA, which was used as the coating material, prevents magnetite nanoparticles from oxidation towards a lower saturation magnetization iron oxide phases. In order to achieve small particle size and uniform size distribution of the magnetite nanoparticles in PMAA matrix, ultrasonic irradiation was applied during co-precipitation. The polymer coated Fe3O4 nanoparticles were characterized using scanning electron microscopy (SEM), laser particle sizer, X-ray diffraction, (XRD) and vibrating sample magnetometry (VSM) techniques and zeta potential measurements.
Subject Keywords
Chemistry.
URI
http://etd.lib.metu.edu.tr/upload/3/12610728/index.pdf
https://hdl.handle.net/11511/18578
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Preparation and characterization of a new CdS-NiFe2O4/reduced graphene oxide photocatalyst and its use for degradation of methylene blue under visible light irradiation
Bagherzadeh, Mojtaba; Kaveh, Reyhaneh; Özkar, Saim; AKBAYRAK, SERDAR (Springer Science and Business Media LLC, 2018-10-01)
In this paper, CdS nanoparticles as a visible light active photocatalyst were coupled by NiFe2O4 and reduced graphene oxide (rGO) to form CdS-NiFe2O4/rGO nanocomposite by facile hydrothermal methods. The CdS-NiFe2O4/rGO nanocomposite shows enhanced photocatalytic activity for the degradation of methylene blue (MB) under visible light illumination. In addition to improved photocatalytic performance, this prepared nanocomposite shows increased photostability and is magnetically separable from the aqueous medi...
Nano structural metal composites : synthesis, structural and thermal characterization
Kaleli, Kadir; Kayran İşçi, Ceyhan; Department of Chemistry (2008)
In this work , metal functional polymers, namely Cr-PS-b-P2VP, Co-PS-b-P2VP, Au-PS-b-P2VP, Fe-PS-b-P2VP and Mo-PS-b-P2VP were prepared by thermal reaction of hexacarbonylchromium, Cr(CO)6, octacarbonyldicobalt,Co2(CO)8, hydrogentetrachloroaurate(III), H(AuCl4).4H2O, trichloroiron(III), FeCl3.6H2O, molybdenum(VI)oxide, MoO3 and PS-b-P2VP. TEM images indicated formation of AuIII, Cr and Co nanoparticles. On the other hand, crystalline structures were detected for Fe-PS-b-P2VP and Mo-PS-b-P2VP. Samples involvi...
Preparation and Comparison of Two Electrodes for Supercapacitors: Pani/CNT/Ni and Pani/Alizarin-Treated Nickel
Koysuren, Ozcan; Du, Chunsheng; Pan, Ning; Bayram, Göknur (Wiley, 2009-07-15)
Polyaniline in emeraldine form was synthesized in the presence of multiwalled carbon nanotubes (CNTs), and the electrochemical capacitance performance of thus formed composite as electrode material has been Studied. The polyaniline/carbon nanotubes (Pani/CNT) composite is found to result in a higher specific capacitance than that of either composite constituent, attributable to the double-layer capacitance behavior of the nanotubes in the Pani/CNT system. However, once assembled into a two-electrode cell, l...
Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single walled carbon nanotube thin films
Ünalan, Hüsnü Emrah; Kuo, Daniel; Parekh, Bhavin; Amaratunga, Gehan; Chhowalla, Manish (Royal Society of Chemistry (RSC), 2008-01-01)
The fabrication of flexible organic photovoltaics (OPVs) which utilize transparent and conducting single walled carbon nanotube (SWNT) thin films as current collecting electrodes on plastic substrates in zinc oxide nanowire (ZnO NW)/poly(3-hexylthiophene) (P3HT) bulk heterojunction photovoltaic devices is reported. The bulk heterojunctions for exciton dissociation are created by directly growing ZnO nanowires from solution on the SWNT electrodes and spin coating the P3HT polymer. A maximum OPV power convers...
Investigation of thermal characteristics of naphthoxazines and polynaphthoxazines via pyrolysis mass spectrometry
Koyuncu, Zeynep; Hacaloğlu, Jale; Department of Chemistry (2009)
In this study, polymerization mechanisms of aromatic (C6H5 or C6F5) and alkyl (CH3, C2H5, C3H7, C6H13, C12H25 or C18H37) amine based naphthoxazine monomers (15-Na, 15Na-C1, 15Na-C2, 15Na-C3, 15Na-C6, 15Na-C12 and 15Na-C18) and thermal degradation mechanisms of polynaphthoxazines synthesized by curing the naphthoxazine monomers (P-15-Na, P-15NaF, P-15Na-C1, P-15Na-C2, P-15Na-C3, P-15Na-C6, P-15Na-C12 and P-15Na-C18) were studied by direct pyrolysis mass spectrometry. During the curing process, the evolutions...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Küçük, “Preparation and characterization of magnetic nanoparticles,” M.S. - Master of Science, Middle East Technical University, 2009.