Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
The ballistic performance of SiC-AA7075 functionally graded composite produced by powder metallurgy
Date
2014-04-01
Author
ÜBEYLİ, MUSTAFA
BALCI, ERHAN
Sarikan, Bertan
ÖZTAŞ, MURAT ORHAN
CAMUŞCU, NECİP
Yıldırım, Raif Orhan
KELEŞ, Ömer
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
149
views
0
downloads
Cite This
The potential of silicon carbide reinforced Functionally Gradient Material (FGM) to be used as armor material was investigated under the impact of armor piercing projectile. For this purpose, the SiC-Aluminum Alloy (AA) 7075 functionally graded composite at different thicknesses was produced from the metallic and ceramic powders via powder metallurgy method. Before the ballistic testing, the precipitation hardening behavior of the samples was determined. And also, the microstructural characterizations of the samples were done with the aid of microscopy techniques. Next, the FGM samples were tested using armor piercing projectile to analyze their impact behavior. In the produced samples, some pore formation was detected. The ballistic experiments showed that the investigated FGMs (up to a thickness of 25 mm) did not withstand the impact of the projectile. At the tested samples, some major cracks and plug formation were detected at macrolevel while there were some microcracks, deformed and elongated grains in the regions near to the deformation zone of the samples.
Subject Keywords
Dual-phase steel
,
Impact behavior
,
Boron-carbide
,
Microstructure
,
Precipitation
URI
https://hdl.handle.net/11511/30932
Journal
MATERIALS & DESIGN
DOI
https://doi.org/10.1016/j.matdes.2013.10.092
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
The effect of austempering parameters on impact and fracture toughness of din 35nicrmov12.5 gun barrel steel
Aksu, Engin; Atala, Haluk; Department of Metallurgical and Materials Engineering (2005)
In this study the effects of different austempering times and temperatures on impact toughness, hardness and fracture toughness properties of 35NiCrMoV12.5 gun barrel steel are investigated. 300 °C, 325 °C and 350 °C were chosen as austempering temperatures. Isothermal holding times at these temperatures were chosen as 1 minute, 10 minutes, 1 hour and 10 hours. It was found that, 350 °C being an exception, austempering temperature and impact toughness has an inverse relationship and impact toughness increas...
Investigation on the ballistic impact behavior of various alloys against 7.62 mm armor piercing projectile
DEMİR, TEYFİK; Ubeyli, Mustafa; Yıldırım, Raif Orhan (2008-12-01)
In this study, impact behavior of the aluminum alloys of 7075 and 5083 and the high-strength low-alloy steel, AISI 4140 was investigated under 7.62 mm armor piercing (AP) projectile experimentally. Various heat treatments were applied to the alloys AISI 4140 and 7075 to see the effect of hardness and strength on their ballistic behaviors. Experimental results showed that among the investigated materials, the best ballistic performance was attained with the alloy, 7075-T651 which maintained the ballistic pro...
AN EXPERIMENTAL AND NUMERICAL STUDY OF BALLISTIC PERFORMANCE OF SFRC STRUCTURES
Aleessa Alam, Burhan; Toksoy, Kaan; Dara, Gokce; Göktepe, Serdar; Yaman, İsmail Özgür (2016-05-13)
This contribution is concerned with the experimental and numerical study of ballistic performance of steel fiber reinforced concrete structures. For this purpose, three different types of panels, made of steel fiber reinforced concrete (SFRC), slurry-infiltrated concrete (SIFCON), and ceramic composite (CC), have been tested under high velocity impact of a rigid projectile. Explicit Finite Element analyses aiming at capturing the experimental residual velocities for the SFRC and SIFCON panels have also been...
The effects of various heat treating parameters on the hardness and microstructures of the experimental 18% nickel maraging steels
Pektas, I; Atala, H (1998-01-01)
The effect of the parameters of heat treatment on the experimental 18% maraging steels was studied using hardness tester, optical, scanning electron and transmission electron microscopy and X-ray metallography techniques. The specimens were solution treated at 815, 900, 1000, 1060 degrees C for periods between 1 and 4 h. After air-cooling to room temperature. a bce martensitic structure was obtained. The higher temperature (1060 degrees C) and longer time (4 h) of the solution treatment caused essentially h...
The influence of cyclic fatigue damage on the fracture toughness of carbon-carbon composites
Ozturk, A (1996-01-01)
The influence of cyclic loads on the fracture toughness of a tightly woven carbon-carbon composite was investigated as a function of stress levels. Results of fracture toughness tests were correlated with microstructural examination using scanning electron microscopy (SEM). Values for the stress intensity factor, K-Ic, were determined using the ASTM single-edge notched bend test. Results were discussed in terms of the effects of applied cyclic stress levels and the relationship of the load-displacement curv...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. ÜBEYLİ et al., “The ballistic performance of SiC-AA7075 functionally graded composite produced by powder metallurgy,”
MATERIALS & DESIGN
, pp. 31–36, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30932.